Recommendation
Machine learning is becoming ubiquitous. This branch of artificial intelligence works by teaching a computer program what correct output looks like. This powerful method raises questions regarding fair outcomes for the people machine learning (ML) affects. Software engineer and attorney Aileen Nielsen examines different kinds of fairness and how training data and algorithms can promote them. For those developing machine learning models, she provides useful examples in Python.
Summary
About the Author
Software engineer and lawyer Aileen Nielsen combines work at a deep learning start-up with a fellowship in law and technology at ETH Zürich.
Learners who read this summary also read
Related Skills
AI Transformation
التمويلات المؤسسية
طور مهاراتك في التفكير
الموارد البشرية
زيادة وعيك الثقافي
القيادة
Leverage AI for Finance
Leverage AI for Leadership
Leverage AI in Your Daily Tasks
المهارات الناعمة
عزز مهاراتك في الثقافة الرقمية
Understand AI
مهارات مكان العمل
تعزيز التنوع والإنصاف والشمول
Use AI for Credit Scoring
استخدام الذكاء الاصطناعي بشكل أخلاقي
Leverage AI for Compliance
Protect Your Data and Privacy
التخفيف من التحيزات المعرفية
Use AI Ethically as a Leader
Understand AI Ethical Impact
فهم التحيز اللاواعي
Comment on this summary