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Abstract

The relationship between the mortgage interest rate and a household’s demand for
mortgage debt has important implications for a host of public policy questions. In this
paper, we use detailed data on over 2.7 million mortgages to provide novel estimates
of the interest rate elasticity of mortgage demand. Our empirical strategy exploits a
discrete jump in interest rates generated by the conforming loan limit—the maximum
loan size eligible for securitization by Fannie Mae and Freddie Mac. This discontinuity
creates a large “notch” in the intertemporal budget constraint of prospective mortgage
borrowers, allowing us to identify the causal link between interest rates and mortgage
demand by measuring the extent to which loan amounts bunch at the conforming limit.
Under our preferred specifications, we estimate that a 1 percentage point increase in the
rate on a 30-year fixed-rate mortgage reduces first mortgage demand by between 2 and
3 percent. We also present evidence that about one third of the response is driven by
borrowers who take out second mortgages while leaving their total mortgage balance
unchanged. Accounting for these borrowers suggests a reduction in total mortgage
debt of between 1.5 and 2 percent per percentage point increase in the interest rate.
Using these estimates, we predict the changes in mortgage demand implied by past and
proposed future increases to the guarantee fees charged by Fannie and Freddie. We
conclude that these increases would directly reduce the dollar volume of new mortgage
originations by well under 1 percent.
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1 Introduction

Buyers face a bewildering array of financing options when purchasing a home. Should they

pay cash, or take out a mortgage? If the latter, should it have a fixed rate or an adjustable

rate? How large a down payment should they make? Given that housing makes up the lion’s

share of most owners’ portfolios, these and related questions are fundamental to their finan-

cial well-being. Yet there is little research that credibly identifies how households respond to

changes in the many parameters of this problem. In this paper, we focus on one element of

the problem—the choice of how much debt to incur—in order to provide novel and credible

estimates of the interest rate elasticity of mortgage demand.

The magnitude of this elasticity has important implications for policy-relevant questions

in several areas of economics. For example, given that mortgages constitute the majority of

total household debt, the elasticity plays a significant role in governing the degree to which

monetary policy affects aggregate consumption and savings behavior (Hall, 1988; Mishkin,

1995; Browning and Lusardi, 1996). In public finance, the elasticity is also important for

understanding the effect of the home mortgage interest deduction on both government tax

revenue and household consumption (Poterba, 1984; Poterba and Sinai, 2008, 2011). Sim-

ilarly, the elasticity also has implications for the effects of government intervention in the

secondary mortgage market, where federal policy directly influences mortgage rates through

the purchase activity of the government-sponsored enterprises (GSEs), Fannie Mae and Fred-

die Mac (Sherlund, 2008; Adelino et al., 2012; Kaufman, 2012). This final consideration has

become particularly salient recently in light of the ongoing debate over the future of the

GSEs in the wake of the 2007-2008 financial crisis.

Yet, despite these potentially important policy implications, there are relatively few em-

pirical estimates of the extent to which individual loan sizes respond to changes in interest

rates. This is due in large part to data limitations, which have led prior research in this area

to focus on other aspects of mortgage choice or to rely on endogenous variation in interest

rates (Follain and Dunsky, 1997; Gary-Bobo and Larribeau, 2004; Martins and Villanueva,

2006; Jappelli and Pistaferri, 2007). The literature estimating interest rate elasticities of

other smaller components of consumer credit—such as credit card, auto, and micro-finance

debt—has been more fruitful, thanks to the availability of detailed microdata and varia-

tion in interest rates arising from either direct randomization or quasi-experimental policy

changes (Gross and Souleles, 2002; Alessie et al., 2005; Karlan and Zinman, 2008; Attanasio

et al., 2008). In the spirit of these studies, we estimate the interest rate elasticity of mort-

gage demand using microdata on over 2.7 million mortgages and an identification strategy
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leveraging “bunching” at nonlinearities in household budget constraints.

We identify the effect of interest rates on borrower behavior by exploiting a regulatory

requirement imposed on the GSEs that generates exogenous variation in the relationship

between loan size and interest rates. Specifically, the GSEs are only allowed to purchase

loans for dollar amounts that fall below the conforming loan limit (CLL), a nominal cap set

by their regulator each year. Because loans purchased by the GSEs are backed by an implicit

government guarantee, interest rates on loans above this limit (“jumbo loans”) are typically

higher than rates on comparable loans below the limit. The difference in interest rates

between jumbo and conforming loans creates a substantial “notch” in the intertemporal

budget constraint of households deciding how much mortgage debt to incur. This notch

induces some borrowers who would otherwise take out loans above the conforming limit to

instead bunch right at the limit.

Recent papers in public finance have developed methods for estimating behavioral re-

sponses to nonlinear incentives in similar settings (Saez, 2010; Chetty et al., 2011; Kleven

and Waseem, 2013).1 We adapt these methods to the case of mortgage choice in the face

of a notched interest rate schedule. Intuitively, the excess mass of households who bunch at

exactly the conforming limit provides us with a measure of the behavioral response to the

interest rate differential. We combine this estimate of bunching with estimates of the interest

rate spread between jumbo and conforming loans to yield an estimate of the average interest

rate (semi-)elasticity of mortgage demand.2 To the best of our knowledge, ours is the first

application of these methods to the mortgage market, or to a consumer credit market of any

kind.

Our preferred specifications indicate that the average size of a borrower’s first mortgage

declines by between 2 and 3 percent for each 1 percentage point rise in the mortgage rate.

Because both the bunching estimates and the jumbo-conforming spread estimates vary de-

pending on the assumptions used in estimation, we provide alternative estimates under a

range of different scenarios. These estimates imply a decline of between 1.5 and 5 percent

for a 1 percentage point increase in the mortgage rate. We also discuss heterogeneity in the

responsiveness of different groups, as well as the implications of fixed adjustment costs and

extensive margin responses—buyers dropping out of the market entirely—for the interpre-

tation of our estimates and their external validity.

1Other recent applications of these and similar methods include Sallee and Slemrod (2010); Manoli and
Weber (2011); Best and Kleven (2013); Chetty et al. (2013); Gelber et al. (2013) and Kopczuk and Munroe
(2013).

2More formally, our goal is to estimate the elasticity of mortgage demand with respect to the rate on the
first mortgage, holding all other prices and interest rates constant.
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While the mortgage demand elasticity is of innate interest, its interpretation depends

in part on the channels through which borrowers adjust their first mortgage balance. Our

second main contribution is to provide suggestive evidence on this margin. Borrowers can

reduce the initial balance of their first mortgage in at least three ways: First, they can make

a larger down payment on the same house at the same price. Second, they can take out a

second mortgage to cover the loan balance in excess of the conforming limit. Third, they can

lower the price of the house they buy, either by negotiating with the seller or by choosing a

less expensive house.

We show that about one-third of bunching borrowers take out second mortgages, which

suggests that the reduction in total mortgage debt in response to a 1 percentage point rise in

the first mortgage interest rate is between 1.5 and 2 percent. We also argue that the pattern

of loan-to-value ratios (LTVs) around the limit suggests that the remaining two-thirds are

putting up more cash rather than buying cheaper houses.

To gauge the economic magnitude of the effects we estimate, we apply them to recently

proposed increases to the fee that the GSEs charge lenders to cover the costs associated

with guaranteeing investor returns on their mortgage-backed securities. We estimate that

the proposed fee increases would reduce the total volume of fixed-rate conforming mortgage

originations by approximately one-fifth of one percent. When we apply our elasticity to

similar increases in fees that have occurred in the recent past, we estimate an effect on the

order of one-half of one percent.

The remainder of the paper is organized as follows. In section 2 we provide relevant

institutional details on the GSEs and the conforming loan limit. Section 3 presents our

conceptual framework. In sections 4 and 5 we discuss our data and empirical research

design. We then present our main results in sections 6-8. Section 9 applies these results to

changes in the GSE guarantee fees and section 10 concludes by discussing avenues for future

research.

2 The GSEs and the Conforming Loan Limit

The two large government sponsored enterprises—the Federal National Mortgage Associa-

tion (Fannie Mae) and the Federal Home Loan Mortgage Corporation (Freddie Mac)—were

created to encourage mortgage lending. The GSEs purchase mortgages from lenders and

either hold them in portfolio or package them into mortgage-backed securities (MBS), which

are guaranteed by the GSEs and sold to investors in the secondary market. By purchasing

mortgages, the GSEs free up lender capital, allowing the lenders to make additional loans,
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thus expanding the general availability of mortgage credit.

The GSEs play a large role and exert a substantial amount of influence in the mortgage

market.3 However, they are only allowed to purchase loans which satisfy a specific set of

criteria as outlined by their regulator. These criteria include requirements for loan docu-

mentation, debt-to-income ratios, leverage, and a nominal cap on the dollar amount of any

purchased loan. Loans which meet these criteria and are therefore eligible to be purchased

by the GSEs are referred to as “conforming loans.” In this paper we are primarily interested

in the cap on loan size, known as the “conforming limit”. Mortgages exceeding this limit are

not eligible for GSE purchase and are referred to as “jumbo loans”.

Figure 1 plots the conforming limit in nominal terms (the solid black line) and in real

2007 dollars (the dashed red line) for each year during our sample period. During this period,

the GSEs were regulated by the Office of Federal Housing Enterprise Oversight (OFHEO),

which set the limit each year based on changes in the national median house price. The

limit was the same for all mortgages in a given year irrespective of local housing market

conditions.4 Following the trend in national house prices, the nominal limit increased from

around $215,000 in 1997 to its peak in 2006 and 2007 at approximately $420,000. In real

terms, the limit also rose sharply over this period, especially during the house price boom

of the mid-2000s.

Interest rates on loans above the conforming limit are typically higher than those on com-

parable loans below the limit for two reasons. First, because the debt underlying the MBS

issued by the GSEs is backed by an implicit government guarantee, investors are willing to

accept lower yields in exchange for that guarantee.5 Part of this savings is eventually passed

on to borrowers in the form of lower interest rates on conforming loans.6 Second, the GSEs

are also granted several special privileges that private securitizers are not. These include

access to a line of credit at the U.S. Treasury, exemption from disclosure and registration

requirements with the Securities and Exchange Commission (SEC), as well as exemptions

3As of 2010 the GSEs were responsible for nearly 50 percent of the approximately $10.5 trillion in
outstanding mortgage debt, either directly or through outstanding MBS (Jaffee and Quigley, 2012). More
than 75 percent of all mortgages originated in 2011 passed through the hands of one of the GSEs (Kaufman,
2012).

4The only exceptions to this rule were Alaska, Hawaii, the Virgin Islands, and Guam, which were deemed
to be high cost areas and had a 50 percent higher conforming limit prior to 2008. Since the housing crisis,
the national conforming loan limit has been replaced by a more complicated series of limits set at the
metropolitan level. All of the analysis in this paper pertains to the pre-2008 period.

5The implicit guarantee became explicit in 2008 when the GSEs were placed under government conser-
vatorship.

6Passmore et al. (2002) and Passmore et al. (2005) provide several theoretical explanations for how the
savings from the guarantee are eventually passed down to mortgage borrowers.

4



from state and local income taxes.7 These advantages lower the cost of securitizing mort-

gages for the GSEs relative to private market securitizers, with some of the savings passed

on to borrowers in the form of lower interest rates on loans below the conforming limit.

The difference in interest rates between loans above and below the conforming limit is

called the jumbo-conforming spread. Even with good mortgage data, identifying the spread

is challenging because borrowers are likely to sort themselves around it, leading to differences

in borrower characteristics that may or may not be observable.8 Although we address these

issues in detail below in section 5, some insight can still be gleaned from examining the raw

data. For example, figure 2 plots the interest rate for all fixed-rate mortgages in our analysis

sample that were originated in 2006 as a function of the difference between the loan amount

and the conforming limit.9 Each dot is the average interest rate within a given $5,000 bin

relative to the limit. The dashed red lines are the predicted values from a regression fit using

the binned data, allowing for changes in the slope and intercept at the limit. There is a clear

discontinuity precisely at the limit, with average interest rates on loans just above the limit

being approximately 20 basis points higher than those on loans just below the limit. While

20 basis points may not reflect the “true” jumbo-conforming spread due to sorting around

the limit, this figure is at least suggestive evidence of a sharp change in the cost of credit as

loan size crosses the threshold.

Regardless of the precise size of the jumbo-conforming spread, its existence introduces a

nonlinearity in the budget constraint of an individual deciding how much mortgage debt to

incur. This nonlinearity induces borrowers who would otherwise take out loans above the

conforming limit to bunch at the limit, perhaps by putting up a larger down payment or

taking out a second loan. The histogram in figure 3 confirms this, showing the fraction of all

loans in our analysis sample which fall into any given $5,000 bin relative to the conforming

limit in effect at the date of origination. Consistent with the notion that borrowers bunch

at the conforming limit, the figure shows a sharp spike in the fraction of loans originated in

the bin immediately below the limit, which is accompanied by a sizable region of missing

mass immediately to the right of the limit. The intuition behind our empirical strategy is to

combine reasonable estimates of the jumbo-conforming spread with a measure of the excess

mass of individuals who bunch precisely at the conforming limit to back out estimates of the

7For a full description of the direct benefits conferred on the GSEs as a result of their special legal status
see Congressional Budget Office (2001).

8Many papers have attempted to overcome this challenge, using a variety of different empirical methods.
See, for example, Hendershott and Shilling (1989), Passmore et al. (2002), Passmore et al. (2005), Sherlund
(2008) and Kaufman (2012).

9See section 4 for details on sample construction. The year 2006 is chosen for illustrative purposes only.
We estimate the jumbo spread using all available loans below in section 5.
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interest rate elasticity of demand for mortgage debt. The next section provides a conceptual

framework that we use to formalize this intuition.

3 Theoretical Framework

We begin by considering a simple two-period model of household mortgage choice.10 Al-

though highly stylized, this model highlights the most relevant features of our empirical

environment and generates useful predictions for household behavior in the presence of a

nonlinear mortgage interest rate schedule. The model is similar in spirit to those in the

recent literature in public finance studying behavioral responses to nonlinear incentives in

other contexts. For example, Saez (2010), Chetty et al. (2011), Chetty et al. (2013), and

Gelber et al. (2013) study labor supply and earnings responses to kinked income tax and so-

cial security benefit schedules. Similar models have also been developed to study behavioral

responses in applications somewhat more analogous to ours, where the budget constraint

features a notch as opposed to a kink. Applications of this framework include fuel economy

regulation (Sallee and Slemrod, 2010), retirement incentives (Manoli and Weber, 2011), in-

come taxes (Kleven and Waseem, 2013), and real estate transfer taxes (Best and Kleven,

2013; Kopczuk and Munroe, 2013). Ours is the first application to the mortgage market, or

to a credit market of any kind.

3.1 Baseline Case: Linear Interest Rate Schedule

Households live for two periods. In our baseline model, we shut down housing choice by

assuming that each household must purchase one unit of housing services in the first period

at an exogenous per-unit price of p.11 Households can finance their housing purchase with a

mortgage, m, which may not exceed the total value of the house. The baseline interest rate

on the mortgage is given by r and does not depend on the mortgage amount. In the second

period, housing is liquidated, the mortgage is paid off, and households consume all of their

remaining wealth.

The household’s problem is to maximize lifetime utility by choosing consumption in each

10The underlying theory is similar to that in Brueckner (1994), among other papers.
11Below, we relax the assumption that households cannot choose the quantity of housing services to

consume.
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period, denoted by c1 and c2.12 In general, the household solves:

max
c1,c2
{U(c1, c2) = u(c1) + δu(c2)} (1)

s.t. c1 + p = y +m (2)

c2 = p− (1 + r)m (3)

0 ≤ m ≤ p, (4)

where δ ∈ (0, 1) is the discount factor and y is first period income. Solving equation (2) for

c1 and substituting this, along with equation (3), into equation (1) allows us to rewrite the

household’s problem in terms of mortgage debt,

V = max
m
{u(y +m− p) + δu(p− (1 + r)m)}, (5)

subject now only to the borrowing constraint (4).

To proceed, we make several simplifying assumptions. First, we assume that household

preferences are given by the constant elasticity function u(c) = 1
1−ξc

1−ξ.13 Second, hetero-

geneity in the model is driven by the discount factor, which is assumed to be distributed

smoothly in the population according to the distribution function F (δ) and density function

f(δ). For illustrative purposes, we assume that y and ξ are constant across households;

however, this assumption is not crucial and we discuss below how relaxing it affects the in-

terpretation of our results. Finally, we assume that households end up at an interior solution

with a positive mortgage amount and a loan-to-value ratio of less that 100 percent—that is,

constraint (4) does not bind.

Under these assumptions, we can solve explicitly for mortgage demand, which is given

by:

m∗ =
p− (δ (1 + r))1/ξ (y − p)
(δ (1 + r))1/ξ + (1 + r)

. (6)

Because ξ, y, and p are assumed to be constant across households, this relationship provides

a one-to-one mapping between a household’s value of δ, and its optimal mortgage choice

when faced with the baseline interest rate schedule.14 Given the assumption of a smooth

12Since we impose the exogenous requirement that households consume one unit of housing services, we
suppress the argument for housing consumption and express the household’s problem as a choice over non-
housing consumption only.

13This functional form allows us to derive a closed-form solution, but all of the basic results hold with
more general utility functions.

14Technically, for this mapping to be one-to-one it must be true that y > r
1+rp. If this condition holds
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distribution for δ, this mapping will induce a smooth baseline distribution of mortgage

amounts, which we denote using the CDF, G0(m), density function, g0(m).

3.2 Notched Interest Rate Schedule

We now consider the effect of introducing a notch in the baseline interest rate schedule at the

conforming loan amount m̄. Loans above this limit are subject to a higher interest rate for

reasons discussed in section 2, leading to the new schedule r(m) = r+∆r ·1 (m > m̄). Here,

∆r is the difference in interest rates between jumbo and conforming loans and 1 (m > m̄)

is an indicator for jumbo loan status. Combining equations (2) and (3) yields the lifetime

budget constraint

C = y −m · [r + ∆r · 1 (m > m̄)] , (7)

where C = c1 + c2 is lifetime consumption. This budget constraint is plotted in figure 4a

along with indifference curves for two representative households.

The notch in the budget constraint induces some households to bunch at the conforming

loan limit. In figure 4a, household L is the household with the lowest baseline mortgage

amount—the largest δ—who locates at the conforming limit in the presence of a notch. This

household is unaffected by the change in rates and takes out a loan of size m̄ regardless of

whether the notch exists. Household H is the household with the highest pre-notch mortgage

amount—the smallest δ—that locates at the conforming limit when the notch exists. When

faced with a linear interest rate schedule, this household would choose a mortgage of size

m̄+ ∆m̄. With the notch, however, the household is indifferent between locating at m̄ and

the best interior point beyond the conforming limit, mI . Any household with a baseline

mortgage amount in the interval (m̄, m̄+ ∆m̄] will bunch at the conforming loan amount,

m̄. Furthermore, no household will choose to locate between m̄ and mI in the notch scenario.

This means that the density when a notch exists, g1(m), will be characterized by both

a mass of households locating precisely at the conforming limit as well as a missing mass of

households immediately to the right of the limit. The effect of the notch on the mortgage

size distribution is shown in the density diagram in figure 4b. The solid black line shows the

density of loan amounts in the presence of the notch and the heavy dashed red line to the

right of the notch shows the counterfactual density that would exist in the absence of the

conforming loan limit.

Because households can be uniquely indexed by their position in the pre-notch mortgage

then m∗ is strictly decreasing in δ. This is likely to be the case for any reasonable values of r and p.
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size distribution, the number of households bunching at the conforming limit is given by:

B =

∫ m̄+∆m̄

m̄

g0(m)dm ≈ g0(m̄)∆m̄, (8)

where the approximation assumes that the counterfactual no-notch distribution is constant

on the bunching interval (m̄, m̄+ ∆m̄).15 This expression is the primary motivation for our

empirical strategy. Given estimates of the amount of bunching, B̂, and the counterfactual

density at the conforming loan limit, ĝ0(m̄), we can solve for ∆m̄, the behavioral response to

the interest rate difference generated by the conforming limit. This behavioral response rep-

resents the reduction in loan size of the marginal bunching individual. Scaling this response

by an appropriate measure of the change in the effective interest rate yields an estimate of

the interest rate elasticity of mortgage demand.

It is worth emphasizing that much of the structure in the model above is not needed

for this result to hold. All we require is that households can be uniquely indexed by their

choice of mortgage size in the pre-notch scenario and that the counterfactual distribution

of mortgage sizes be smooth. Any model for which these conditions hold would generate

equation (8).

3.3 Heterogeneous Intertemporal Elasticities and Incomes

The derivation of equation (8) was under the assumption that ξ and y were constant across

households. In that case, it was possible to back out the exact change in mortgage amount for

the marginal bunching individual. When intertemporal elasticities and incomes are allowed

to vary across households, the amount of bunching instead identifies the average response

among the marginal bunching individuals associated with each intertemporal elasticity and

income level. To see this, let the joint distribution of discount factors, intertemporal elas-

ticities, and incomes be given by f̄(δ, ξ, y), where y ∈ (0, ȳ] and ξ ∈ (0, ξ̄] for some upper

bounds, ȳ and ξ̄. For a fixed (ξ, y) pair, the bunching interval is determined in exactly the

same way as in the baseline model. Denote this interval (m̄, m̄ + ∆m̄ξ,y), where ∆m̄ξ,y is

the behavioral response of the marginal bunching individual among those with intertem-

poral elasticity 1/ξ and income y. Further, let ḡ0 (m, ξ, y) denote the joint distribution

of mortgage sizes, intertemporal elasticities, and incomes in the pre-notch scenario and

g0(m) ≡
∫
ξ

∫
y
ḡ0 (m, ξ, y) dydξ the unconditional mortgage size distribution. The amount

15This approximation merely simplifies the discussion. In the empirical application we allow for curvature
in the counterfactual distribution.

9



of bunching can then be expressed as

B =

∫
ξ

∫
y

∫ m̄+∆m̄ξ,y

m̄

ḡ0(m, ξ, y)dmdydξ ≈ g0(m̄)E [∆m̄ξ,y] . (9)

In this case, estimates of bunching and the counterfactual mortgage size distribution near

the conforming limit allow us to back out the average change in mortgage amounts due to

the interest rate difference generated by the conforming loan limit.16

3.4 Endogenous Housing Choice

With the choice of housing fixed, as in the discussion above, borrowers can only respond to

the presence of a notch by adjusting their mortgage balance. In other words, all households

buy the same house at the same price as in the absence of a notch, but some households

respond to the notch by making a larger down payment or taking out a second mortgage. In

reality, some households may instead choose to buy a lower quality home, leading to a lower

level of h.

Our model extends to cover endogenous housing choice, albeit at the cost of a closed-form

solution. Consider again equation (5), the household’s intertemporal optimization problem.

Households can now choose the quantity of housing services to purchase (h), and this quantity

has a direct effect on first-period utility, so that

V = max
m,h
{u(y +m− ph, h) + δv(ph− (1 + r)m)}, (10)

with v (c2) now denoting second-period utility, as distinct from u (c1, h) in which housing

enters directly.

The optimal h and m must now satisfy two first-order conditions:

∂V

∂m
= u1 − δ (1 + r) v1 = 0 (11)

∂V

∂h
= u2 − (pu1 − pδv1) = 0. (12)

Intuitively, the first condition captures the trade-off, using mortgage debt, between consump-

tion today and consumption tomorrow. The second condition says that households trade off

the cost of purchasing housing today, less the amount recovered tomorrow when it is sold,

16Kleven and Waseem (2013) show a directly analogous result in the context of earnings responses to
notched income tax schedules.
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against its consumption value today.

While there are no obvious functional forms that allow us to derive equivalents to equation

(6), the intuition remains the same. Under standard conditions, there are optimal m∗ and h∗,

both of which can shift in response to the notch in the interest rate schedule. Our bunching

estimation will capture the shifts in m∗, which could result in part from changes in housing

consumption (h∗).

4 Data

To conduct our empirical analysis, we use data on loan sizes and interest rates that come

from two main sources. The first is a proprietary data set of housing transactions from

DataQuick (DQ), a private vendor which collects the universe of deed transfers and property

assessment records from municipalities across the U.S. These data serve as our primary

source of information on loan size. For descriptive purposes, we have also matched the DQ

data to loan application information made available through the Home Mortgage Disclosure

Act (HMDA), which provides us with a limited set of borrower demographics.17 The second

data source consists of loan-level records collected by Lender Processing Services (LPS) and

contains extensive information on interest rates, borrower characteristics, and loan terms,

which we use to estimate the jumbo-conforming spread. A brief description of each data

source and our sample selection procedures is given below.

4.1 DataQuick

Each record in the DQ data set represents a single transaction and contains information on

the price, location, and physical characteristics of the house, as well as the loan amounts

on up to three loans used to finance the purchase. We restrict the sample to include only

transactions of single-family homes with positive first loan amounts that took place within

metropolitan statistical areas (MSAs) in California between 1997 and 2007. We use data

from California because that is where the information from DataQuick is most reliable,

particularly for identifying when multiple loans were used to finance a purchase. In addition,

because average house prices in California are higher than in other states, we expect that the

differences between the typical transaction and one financed with a loan near the conforming

limit will be less stark in California than in other parts of the country.

17The matching procedure uses information on the primary loan amount, lender name, Census tract,
property type, and year. We successfully match about 60 percent of the larger DQ sample to an observation
in HMDA. Further details are available from the authors on request.
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We limit our time frame to the period between 1997 and 2007 for several reasons. First,

the LPS data that we use to estimate the jumbo-conforming spread are most comprehensive

from the mid-1990s on. Second, we want to ensure that the conforming limit was being set

in a consistent way across all years in the sample. Until 2007, a single conforming limit was

set annually according to a formula and was imposed uniformly across all of the lower 48

states. However, after 2008, when the GSEs were taken into government conservatorship,

the standards for determining the conforming limit were changed in several ways, including

a provision which allows it to vary across different metropolitan areas.

Another reason we avoid using post-2007 data is that there were significant changes to the

structure of the mortgage market during the financial crisis that could potentially confound

our analysis. For example, the jumbo securitization market almost completely dried up

during this period, which lead to a sharp reduction in the number of jumbo loans originated

and a large rise in the jumbo-conforming spread (Fuster and Vickery, 2013). We limit our

sample period to years before 2007 in order to avoid conflating the reduction in supply of

jumbo loans during the housing bust with the demand-side response to the conforming limit

that we are most interested in. Finally, we drop all loans originated from October through

December, since banks may hold such loans in their portfolios until the conforming limit

changes in January (Fuster and Vickery, 2013).18

These restrictions leave us with a primary estimation sample of approximately 2.7 million

transactions representing 26 MSAs. Table 1 presents summary statistics for this sample

as well as the sub-sample of transactions with first loan amounts within $50,000 of the

conforming limit that was in place in the year of the transaction. All dollar amounts here

and throughout the analysis are converted to real 2007 dollars.

In the full sample, shown in column 1, the mean first loan size is approximately $350,000

and the mean transaction price is $465,000. Column 3 shows the means from the restricted

sample. Although the large sample size leads many of the differences between columns

1 and 3 to be statistically significant, they are qualitatively similar along all dimensions.

Interestingly, because the restricted sample drops both high priced houses and low priced

houses, the average transaction price and loan amount near the conforming limit are actually

a bit lower than the averages for the entire sample. In many states with lower average house

prices, there are relatively few loans made substantially above the limit, but in California

such transactions are much more common.

18We also drop extreme outliers in appraisal value or LTV ratio.
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4.2 LPS

The primary disadvantage of the DQ data set for studying mortgages is that it does not record

interest rates and lacks important information on borrower characteristics, such as credit

scores and debt-to-income ratios. Consequently, we turn to data from LPS to estimate the

jumbo-conforming spread, as well as interest rates on second mortgages taken out at closing.

The LPS data are at the loan level and run from 1997 to the present, covering approximately

two-thirds of the residential mortgage market.19 The data contain extensive information on

mortgage terms and borrower characteristics, as well as geographic identifiers down to the

zip code level. We focus on first mortgage originations for home purchases and apply the

same set of restrictions described above for the DQ data, in particular the limitations to

California and the first nine months of each year between 1997 and 2007.

Table 2 presents summary statistics from the LPS data, for fixed-rate (FRM) and adjustable-

rate (ARM) loans separately. Columns 1 and 3 report statistics for the full analysis sample,

while columns 2 and 4 restrict the sample to loans within $50,000 of the conforming loan

limit. In general, the restricted samples for each loan type are quite similar to the full sam-

ple, suggesting that loans near the limit are reasonably representative of the entire sample,

at least along these dimensions.

5 Empirical Methodology

5.1 Estimating the Behavioral Response to the Conforming Limit

In section 3, we showed that the behavioral response to the conforming loan limit can be

derived from estimates of the amount of bunching and the counterfactual mass at the limit.

To estimate these quantities we follow the approach taken by Kleven and Waseem (2013).

Since we are primarily interested in estimating the behavioral response in percentage

terms, we first take logarithms of the loan amounts. We then center each loan in our data

set at the (log) conforming limit in the year that the loan was originated. A value of zero thus

represents a loan size exactly equal to the conforming limit while all other values represent

(approximate) percentage deviations from the conforming limit. We group these normalized

loan amounts into bins centered at the values mj, with j = −J, . . . , L, . . . , 0, . . . , U, . . . , J ,

19Although data are available from earlier years, they are less comprehensive and the loans have higher
average “seasoning”, meaning that it takes longer after origination for them to appear in the data set (Fuster
and Vickery, 2013). If loans that are quickly prepaid or foreclosed on never appear, seasoned data may be
less representative of the universe of loans.
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and count the number of loans in each bin, nj. To obtain estimates of bunching and the coun-

terfactual loan size distribution we define a region around the conforming limit, [mL,mU ],

such that mL < 0 < mU and fit the following regression to the count of loans in each bin

nj =

p∑
i=0

βi(mj)
i +

U∑
k=L

γk1 (mk = mj) + εj. (13)

The first term on the right hand side is a p-th degree polynomial in loan size and the second

term is a set of dummy variables for each bin in the excluded region. Our estimate of

the counterfactual distribution is given by the predicted values of this regression omitting

the effect of the dummies in the excluded region. That is, letting n̂j denote the estimated

counterfactual number of loans in bin j, we can write

n̂j =

p∑
i=0

β̂i(mj)
i. (14)

Bunching is then estimated as the difference between the observed and counterfactual bin

counts in the excluded region at and to the left of the conforming loan limit,

B̂ =
0∑

j=L

(nj − n̂j) =
0∑

j=L

γ̂j. (15)

This procedure is illustrated graphically in figure 5. The solid black line represents the

empirical count of loans in each bin, the heavy dashed red line is the estimated counterfactual

distribution, the solid shaded gray area is the bunching estimate, and the cross hatched

shaded gray area is the amount of missing mass due to bunching, M̂ =
∑U

j>0 (nj − n̂j) =∑U
j>0 γ̂j.

The parameter of primary interest is ∆ ˆ̄m, the empirical analogue of ∆m̄ from equation

(8). This parameter represents the average behavioral response of the marginal bunching

individual measured as a percentage deviation from the conforming limit. Following the

theory, we calculate it as

∆ ˆ̄m =
B̂

ĝ0(m̄)
, (16)

where ĝ0(m̄) =
∑0

j=L (n̂j) /
∣∣m0−mL

L

∣∣ is the estimated counterfactual density of loans in the

excluded region at and to the left of the conforming loan limit. Intuitively, if the ratio of

bunched to counterfactual loans is large, the existence of the limit has a large effect on the
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behavior determining the observed distribution of loan amounts.

There are two key identifying assumptions necessary for equation (16) to provide a valid

estimate of the behavioral response to the conforming limit. The first is that the counterfac-

tual loan size distribution that would exist in the absence of the limit would be smooth. That

is, any spike in the loan size distribution at the conforming limit can be solely attributed to

the existence of the limit and not some other factor. We test for violations of this assumption

below by examining how the distribution of loan sizes changes when the conforming limit

moves from one year to another. The second assumption is that households can be uniquely

indexed by their counterfactual choice of mortgage size in the absence of the limit—that is,

there is a well-defined marginal buncher. While this assumption is fundamentally untestable,

most reasonable models of mortgage choice would imply such a result.

In order to estimate the components of equation (16), there are several free parameters

that we must choose: the bin width (
∣∣m0−mL

L

∣∣), the order of the polynomial (p), and the

location of the lower and upper limits of the excluded region (mL and mU). Following

Kleven and Waseem (2013), we choose the upper limit to minimize the difference between

bunching (B̂) and missing mass to the right of the notch in the excluded region (M̂). This

is done using the following iterative procedure: First, initialize mU at a small amount (m0
U)

near the limit and estimate bunching (B̂0), missing mass (M̂0), and the difference between

the two, (B̂0−M̂0). Next, increase mU by a small amount to m1
U and calculate the difference

B̂1 − M̂1. We repeat this process until B̂k − M̂k > B̂k−1 − M̂k−1, at which point we stop

and take mk−1
U to be the upper limit of the excluded region.

For the other three parameters, our preferred specification uses 1-percent bins, a 13th-

degree polynomial, and sets mL = 0.025. We prefer this specification because, among the

parameter configurations we considered, it yields the smallest difference between B̂ and M̂

in the sample that pools across all years and loan types. It is worth noting, however, that the

estimated missing mass from the right of the limit need not be exactly equal to the number

of bunched loans. In fact, the theory predicts that the two will likely differ.

As noted by Kleven and Waseem (2013), the procedure we use to estimate bunching

ignores both extensive margin responses, and the leftward shift of the distribution outside

of the excluded region generated by intensive responses among those who do not bunch. In

response to the higher interest rate, some borrowers who would have located to the right of

the limit may instead choose not to purchase a home at all (extensive margin responses),

and jumbo borrowers who are not induced to bunch will still presumably choose to borrow

slightly less than they would at conforming rates (intensive margin responses). If these types

of responses have a large enough effect on the observed loan size distribution, then choosing
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parameters to minimize the difference between bunching and missing mass could lead to bias

in the estimated behavioral response. To account for this, we explore robustness to various

choices of the underlying parameters, which often yield estimates of B̂ that are smaller than

M̂ , but, most importantly, give very similar estimates of ∆ ˆ̄m to our preferred specification.

Finally, we calculate standard errors for all estimated parameters using a bootstrap pro-

cedure, as in Chetty et al. (2011). At each iteration (k) of the bootstrap loop we draw

with replacement from the estimated errors, ε̂j, in equation (13) to generate a new set of

bin counts, nkj . We then re-estimate the amount of bunching using these new counts. Our

estimate of the standard error for ∆ ˆ̄m is the standard deviation of the estimated ∆ ˆ̄mks.

The same procedure produces standard errors for all the other bunching parameters that we

report.

5.2 Estimating the Jumbo-Conforming Spread

Although our estimates of bunching provide a reliable measure of the behavioral response

to the conforming loan limit, in order to convert that response into an elasticity we also

need to estimate the magnitude of the change in rates that borrowers face. This exercise is

complicated by the fact that there is a large class of borrowers who, as we demonstrate, bunch

precisely at the conforming limit. These borrowers may have unobserved characteristics that

are correlated with interest rates and that might bias an estimate of the jumbo-conforming

spread based on a simple comparison of observed mortgage rates. However, this concern

is not as grave as it may first appear. In particular, we are aided greatly by the fact that

mortgage rates are typically determined based on a well defined set of borrower and loan

characteristics that are all readily observable in the LPS data. To the extent that we are

able to fully control for these characteristics, our estimates of the jumbo-conforming spread

should be relatively close to the true interest rate differential facing the average borrower in

our sample.

With this in mind, our main approach to estimating the jumbo-conforming spread follows

that of Sherlund (2008), who exploits the sharp discontinuity at the conforming loan limit

while also controlling semiparametrically for all other relevant determinants of interest rates.

Of course, in a finite sample, it is not possible to control completely flexibly for all observed

determinants of interest rates and there may be some unobserved characteristics which our

controls are unable to capture. To account for this, we also estimate models which use

the appraised value of the home as an instrumental variable (IV) for jumbo loan status, as

described in detail below.
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Unlike Sherlund (2008), who uses an analogue to local linear regression, we incorporate

the semiparametrics in standard ordinary least squares regressions. We do this both to

reduce the computational burden and to allow for a straightforward comparison with the IV

estimates. In particular, we estimate variants of the following equation

ri,t = αz(i),t + βJi,t + fJ=0 (mi,t) + fJ=1 (mi,t) + sLTV (LTVi,t) + sDTI (DTIi,t)

+ sFICO (FICOi,t) + PMIi,t + PPi,t + g (TERMi,t) + εi,t,
(17)

where ri,t is the interest rate on loan i originated at time t, α is a zip-code by time fixed effect,

and J is a dummy variable for whether the loan amount exceeds the conforming limit. In the

spirit of a regression discontinuity design, we interact J with cubic polynomials in the size of

the mortgage separately on either side of the conforming limit (fJ=0 (mi,t) and fJ=1 (mi,t))

in order to control for any underlying continuous relationship between loan size an interest

rates. In addition, we include splines in the loan-to-value ratio (LTV ), debt-to-income ratio

(DTI), and credit score (FICO) as well as fixed effects indicating whether the borrower

took out private mortgage insurance (PMI) and if the mortgage had a prepayment penalty

(PP ). Finally, we also control flexibly for the length of the mortgage (TERM).20 The

coefficient of interest is β, which provides a valid estimate of the jumbo-conforming spread

under the assumption that we have successfully controlled for borrower selection around the

limit.

If there are other unobserved determinants of interest rates which are also correlated with

jumbo loan status, than estimates of β based on equation (17) will produce biased estimates

of the true jumbo-conforming spread. To gauge the extent to which this may be affecting our

results, we also estimate a version of equation (17) in which we instrument for jumbo loan

status using a discontinuous function of the appraised value of the home, following Kaufman

(2012).21 Because mortgage contracts are frequently determined prior to the actual date of

transaction, the official loan-to-value (LTV) ratio used by the bank to determine whether a

borrower qualifies for a loan is often set based on an independent appraisal value, not the

actual transaction price. Moreover, since many homebuyers purchase a home with an LTV of

exactly 80 percent, if a home appraisal comes in just over the conforming loan limit divided

by 0.8, then a buyer is substantially more likely to take out a jumbo loan. This suggests

an approach in which we instrument for Ji,t in equation (17) with whether an appraisal is

above or below m̄
0.8

. The key to this “appraisal limit” being a valid instrument is that, unlike

20The exact specifications are described in the results section below.
21Adelino et al. (2012) and Fuster and Vickery (2013) employ similar strategies to look at the effects of

the conforming limit on house prices and on mortgage supply, respectively.

17



their actual loan amount, borrowers likely have little control over the exact outcome of their

appraisal.

This IV approach is not a panacea, however. As Kaufman (2012) notes, it identifies a

local average treatment effect among borrowers who choose to increase their first mortgage

balance in order to keep their LTV constant in response to a high appraisal. But in this

paper, we are interested in estimating the average elasticity among the entire population

of borrowers with counterfactual loan amounts above the limit. If there is heterogeneity in

the jumbo-conforming spread, then those facing the lowest spread will be the most likely

to take out a larger loan in response to a high appraisal. Consequently, it is likely that

the IV estimates provide a lower bound on the average spread in the population. Given

the clear difficulty of estimating the “true” jumbo-conforming spread in the full population

of borrowers, our preferred approach is to estimate the spread using both techniques and

present a range of plausible elasticities.

6 Bunching and Jumbo-Conforming Spread Estimates

The next three sections present our primary empirical results. We begin in this section by

presenting graphical evidence documenting bunching at the conforming loan limit as well as

formal estimates of bunching and the behavioral response to the jumbo-conforming spread.

We then present a series of estimates of the magnitude of the jumbo-conforming spread which

we combine with the bunching estimates in section 7 to calculate elasticities. In section 8,

we conclude with a discussion on the ways in which borrowers appear to be adjusting their

loan sizes.

6.1 Bunching at the Conforming Limit

6.1.1 Results for all Borrowers

As a starting point for our empirical analysis, figure 6 plots both the observed (log) loan

size distribution and the counterfactual distribution estimated from the bunching procedure

using all available loans in the DQ sample. Although our estimation is carried out in the full

sample, in this (and subsequent) figures we have narrowed our focus to the range of loans

which fall within 50 percent of the conforming limit. The x-axis shows the difference between

the log loan amount and the log conforming limit in the year the loan was originated, so

that 0 is the limit itself and each bin represents roughly a 1 percent incremental deviation

from the limit. The y-axis on the right indicates the number of loans in each bin, while the
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y-axis on the left indicates the fraction of all loans represented by that number.

The connected black line plots the histogram of (log) loan size, which exhibits a sharp

peak precisely at the limit. This bin contains approximately 100,000 loans representing

4 percent of the entire sample, which is roughly four times as many loans as in the bin

immediately to the left. The black line also shows a clear deficit of loans to the right of the

limit, with the first bin containing only about half as many loans as the bin immediately to

the left of the limit. The heavy dashed red line shows the fitted polynomial that we take as

our counterfactual loan size distribution. The vertical dashed gray lines represent the lower

(mL) and upper (mH) limits of the excluded region, as defined in section 5.1.

The estimated number of loans bunching at the limit is reported in the figure and is

calculated as the sum of the differences between the black and red lines in each bin in the

excluded region at and to the left of the conforming limit. As the plot makes clear, bunching

is remarkably sharp; almost all of the approximately 84,000 “extra” loans in this region are

in the bin that contains the limit itself. Our estimate of ∆ ˆ̄m, the behavioral response to

the conforming limit, is also reported in the figure. It implies that the average marginal

bunching borrower reduces his loan balance by roughly 3.8 percent.

The first column of table 3 repeats these estimates along with their standard errors

and several other parameters estimated during the bunching procedure. As another way of

gauging the magnitude of the response, the third row of table 3 reports a measure of the

“excess mass” at the conforming limit. We calculate this as the ratio of the number of loans

bunching at the limit to the number of loans which would have been there in its absence.

The estimate implies that there are roughly 3.78 times more loans at the conforming limit

than would have otherwise been expected. All of these parameters are precisely estimated.

In the last row of table 3, we also report the upper limit of the excluded region used in

estimation (mH). If there were no extensive margin responses (borrowers leaving the market

entirely) then this number would provide an estimate of the largest percent reduction in

mortgage size among bunching individuals. That is, no individual with a counterfactual

loan size more than mH percent larger than the conforming limit would be induced to

bunch. Given extensive margin responses, it is possible that our estimate of mH differs from

the true cutoff value. Nonetheless, it provides a useful gauge of the magnitude of behavioral

responses among those who reduce their mortgage sizes the most. The estimate implies an

upper bound on behavioral responses of roughly 16 percent, meaning that nearly all of the

borrowers bunching at the conforming limit would have had mortgages that were less than

16 percent larger than the limit had it not existed.

As noted above, one of the key assumptions necessary for bunching to identify behavioral
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responses is that the counterfactual loan size distribution be smooth. While there is no way

to directly test this assumption, one way to evaluate its plausibility is to examine what

happens to the empirical distribution of loan sizes as the conforming limit moves from one

year to the next. If the conforming limit is the only thing causing bunching, then bunching

should track the movement of the conforming limit, and the distribution should be smooth

at previous and future conforming limits. Figure 7 plots the empirical loan size distribution

separately for the years 2000, 2002, and 2004.22 At any given nominal loan amount, the

distribution appears to be smooth except in the year for which that loan amount serves as

the conforming limit. While not definitive, this result strongly supports the counterfactual

smoothness assumption.

6.1.2 Fixed versus Adjustable Rate Mortgages

In addition to looking at the effect of the conforming limit on overall loan size, recent work

by both Fuster and Vickery (2013) and Kaufman (2012) draws attention to several stylized

facts that make it particularly interesting to investigate heterogeneity in the response by type

of loan. In particular, these authors document a sizable and sharp decline in the share of

fixed-rate mortgages (FRMs) relative to adjustable-rate mortgages (ARMs) precisely at the

conforming limit. We replicate this stylized fact in figure 8 using our own sample of loans

from DataQuick. Using the same 1 percent bins as before, this figure plots the share of loans

that are FRMs as a function of loan size relative to the conforming limit. To the left of the

limit, the FRM share declines gradually as the loan amount increases, reaching roughly 55

percent just below the limit. It then spikes to about 75 percent at the limit before falling

to 20 percent immediately to the right. Beyond the conforming limit, the share then rises,

eventually reaching a plateau of about 35 percent.

This drop in the FRM share is not a coincidence. Fixed-rate mortgages are generally

estimated to have a larger jumbo-conforming spread relative to ARMs due to the fact that

their returns are much more vulnerable to interest rate risk.23 Since the FRM share well

to the right of the limit is substantially lower the FRM share to the left of the limit, a

quick glance at figure 8 might suggest an extensive margin response. That is, in response

to the higher jumbo spread for FRMs some borrowers may choose to substitute toward

22We avoid plotting consecutive years to preserve the clarity of the picture, but the results hold at any
horizon.

23We replicate this well-documented difference in spreads using our own sample of loans from LPS in
section 6.2. Since jumbo loans are harder to unload onto the secondary mortgage market, originators will
demand a higher interest rate on jumbo FRMs relative to jumbo ARMs in order to compensate them for
the additional risk they bear by having to hold the loans in portfolio.
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adjustable-rate mortgages.

In contrast, we argue that the change in the FRM share at the conforming limit occurs

because more FRM borrowers than ARM borrowers bunch at the limit, and not because

individual borrowers are choosing ARMs over FRMs. To show this, we separately estimate

bunching for both fixed-rate and adjustable-rate mortgages. If the drop in FRM share at the

limit is driven primarily by borrowers substituting to ARMs, then we should expect to see

both a downward shift in the observed distribution of FRMs relative to its counterfactual

immediately to the right of the limit and a concomitant upward shift in the ARM distribution.

Figures 9 and 10 show the results from this exercise for fixed and adjustable-rate mort-

gages, respectively. As with the combined results, the standard errors and additional bunch-

ing parameters are also reported separately for each loan type in columns 2 and 3 of table 3.

While figure 9 shows a substantial downward shift in the FRM distribution to the right of

the limit, figure 10 shows no corresponding upward shift in the ARM distribution. In fact,

much like in the figures for the FRM and combined samples, the ARM distribution features

a region of missing mass immediately to the right of the limit. Moreover, in our preferred

specification, the missing mass for each type of loan is roughly equal to the mass of that type

of loan bunching at the limit. These results suggest, at least in aggregate, that the drop in

the FRM share at the conforming limit is driven primarily by differential bunching within

loan type rather than borrowers substituting from one type of mortgage to another.24 This

is further reflected in the estimate of excess mass reported in table 3, which is roughly 4.4

times larger for FRMs than for ARMs.

While we do not believe that our results invalidate any of the conclusions drawn by

Fuster and Vickery (2013) or Kaufman (2012), they do illuminate the fact that perhaps the

most intuitive channel for the drop in the FRM share above the limit—substitution between

FRMs and ARMs—is not the correct one. With this in mind, for the remainder of the paper

we will present estimates for FRMs and ARMs separately.

6.1.3 Heterogeneity by Borrower Type

In addition to investigating bunching behavior by loan type, it is also interesting to examine

whether bunching varies with the observable characteristics of borrowers. While the available

information on borrower demographics is somewhat limited, we are able to provide several

rough cuts of the data based on race and income using the subset of DQ transactions that

24Of course, since we only observe average responses, it is still possible that some borrowers choose ARMs
over FRMs because of the limit, particularly if there is heterogeneity in the costs of ARMs and FRMs within
the population. But since the figures do not suggest any noticeable aggregate response, an offsetting group
of borrowers would have to be choosing FRMs over ARMs because of the limit.
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we matched to HMDA loan applications. For this exercise we restrict attention to fixed-rate

mortgages, where the sample sizes are largest. Using the race and ethnicity information in

HMDA data, we define a loan as belonging to a “minority” borrower if the primary loan

applicant reports his race as black or his ethnicity as Hispanic, and as belonging to a “non-

minority” borrower otherwise. Similarly, we define a borrower as “low-income” if the income

reported on the loan application was below the median income reported across all loans and

“high-income” if the reported income is above the median.

Figure 11 shows results from estimating bunching separately in each of these four sub-

samples. Panels (a) and (b) show results for non-minority and minority borrowers while

panels (c) and (d) present the results for high-income and low-income borrowers, respec-

tively. In each case there is substantial evidence of heterogeneous responses, with far less

bunching among minority and low-income borrowers than among non-minority and high-

income borrowers. For non-minority and high-income borrowers the estimated percentage

reduction in loan size is roughly 7 to 8 percent, while for minority and low-income borrowers

it is closer to 4 to 5 percent.25 Table 4 confirms the visual impressions given by figure 11,

reporting the point estimates and standard errors for the bunching parameters we estimate.

For each of the reported parameters, the standard errors are small enough to reject the null

that bunching behavior is the same across the high-income and low-income samples, as well

as across the non-minority and minority samples.

These differences could arise from at least three sources: heterogeneous preferences, het-

erogeneous costs of adjusting first mortgage balances, or borrower-level differences in the

magnitude of the jumbo-conforming spread. While we cannot test for differences in the mag-

nitude of the spread along these dimensions because the LPS data do not contain information

on race or income, we do not find robust evidence of differences along other dimensions that

are likely correlated with these characteristics, such as borrowers’ credit scores. This finding

suggests that one of the first two sources of heterogeneity are likely operative.

In the context of income taxes, Kleven and Waseem (2013) are able to distinguish between

the role of preferences and adjustment costs using the fact that a notch can sometimes

create a dominated region in which no wage earner, regardless of tax elasticity, would choose

to locate in the absence of adjustment costs. By counting the number of wage earners

25Part of the smaller response among low-income borrowers could be driven by the fact that there are
virtually no borrowers in the low-income sample who take out jumbo loans. That is, almost all of the
low-income borrowers who would locate anywhere to the right of the limit have chosen to bunch, which
limits the possible magnitude of the estimated response. Consequently, the bunching borrowers may all be
infra-marginal, and the bunching estimate cannot be interpreted as an average marginal response, as in the
theory.
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observed in the dominated region they are able to back out an estimate of adjustment

costs. Unfortunately, we cannot perform a similar exercise here because there is no such

dominated region in our setting. In the terminology of Kleven and Waseem (2013), the

jumbo-conforming spread creates a “downward notch” where, for any finite loan amount

above the limit, there exists a first mortgage demand elasticity sufficiently close to zero such

that some borrower would be willing to take out that loan. It is therefore not possible to

estimate the magnitude of any differences in adjustment costs across these four groups.

While it seems more likely that these differences are driven by adjustment costs than by

differences in underlying preferences for first mortgage debt, we leave a full analysis of this

issue for future research. However, it is important to note that because we are not able to

determine the magnitude of such adjustment costs, the elasticities we estimate below are

necessarily “reduced form”, in the sense that they incorporate the effect of adjustment costs

and are not driven entirely by the intertemporal elasticity of substitution alone.

6.2 Jumbo-Conforming Spread

To convert the behavioral responses estimated from bunching into elasticities, we next need to

obtain an estimate of the interest rate differential at the limit. Table 5 presents estimates of

the jumbo-conforming spread, following the strategies discussed in section 5.2. We estimate

the spread using OLS and IV, for fixed- and adjustable-rate mortgages separately, with

four different specifications each. All of the specifications include controls for the distance

to the conforming limit (linear, quadratic, and cubic terms) interacted with the jumbo loan

indicator variable, as well as controls for the loan-to-value (LTV) ratio, debt-to-income (DTI)

ratio, missing DTI ratio, FICO credit score, missing FICO score, whether the loan includes

private mortgage insurance (PMI), and whether the loan has a prepayment penalty. They

also include zip code by month fixed effects and fixed effects for standard loan lengths,

such as 15, 30, and 40 years, as well as a linear term to capture the effects of nonstandard

lengths. Analogous estimates of the spread, estimated in logs, are provided in table 6. These

estimates are used in calculating the elasticities below, but we discuss the results in levels

here because it is more intuitive to think of changes in interest rates in terms of basis or

percentage points.

Across the columns of the table, the four specifications are: (1) a baseline, using all

available data, with linear controls for the LTV and DTI ratios and the FICO score; (2) the

same specification replacing the linear controls for LTV, DTI and FICO with more flexible

cubic B-splines; (3) the same specification as in (2) but with a sample limited to loans
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within $50,000 of the conforming limit; and (4) the same specification in (2) but with a

sample limited to loans within $10,000 of the limit.

For fixed-rate mortgages, applying least squares yields estimates of the jumbo-conforming

spread that are tightly clustered around 17 to 18 basis points and precisely estimated, re-

gardless of the specification. These estimates are similar to Sherlund’s (2008) estimate of

22 basis points, despite our use of a simpler estimation technique and a different data set

covering a smaller geographic area and a shorter time horizon.26

However, as discussed above, the OLS specifications do not control for borrower selection

around the conforming limit. As we have just shown, a large fraction of borrowers who

would otherwise get loans just above the limit instead choose to bunch at the limit to get

conforming loans and reduce their rates. If these borrowers differ in any unobserved ways

from those who do not reduce their rates, the estimates of the spread could be biased.

To address this potential selection issue, the row labeled “IV” presents estimates of

the spread when we instrument for the jumbo indicator with an indicator for whether the

appraised value of the house exceeds the “appraisal limit” (the conforming limit divided by

0.8). As would be expected, these estimates are somewhat less precise than the OLS results

but are nonetheless still significant at conventional levels. The estimates run from 10 to

13 basis points and are uniformly smaller than the OLS results, possibly reflecting either

borrower selection or the fact that the IV approach estimates a local average treatment

effect among a population of borrowers who may face a lower spread.27 Reassuringly, these

estimates are quite similar to Kaufman’s (2012) estimate of 10 basis points, using essentially

the same technique but a different sample of loans.28

Our estimates of the jumbo-conforming spread for initial ARM rates, presented in the

lower half of table 5, are considerably more noisy and merit further study. The OLS estimates

are uniformly negative—that is, jumbo loans have lower rates than conforming loans—and

the negative coefficient gets bigger as the sample becomes more focused on loans near the

limit. It is quite unlikely that this is an accurate representation of pricing of ARMs above

and below the conforming limit. Indeed, we saw in the previous section that a significant

fraction of borrowers with ARM balances that would be just above the limit under the

counterfactual instead choose to bunch at the limit, although the effect is smaller than in

26Specifically, Sherlund (2008) uses data from the Monthly Interest Rate Survey that cover the entire U.S.
from 1993 to 2007. We use LPS data from California only from 1997 to 2007.

27Regressing the jumbo limit indicator on the appraisal limit indicator, including all of the other covariates
as controls—that is, the first stage of the IV—yields a coefficient of around 0.2, with slight variation depending
on the specification. The instrument is quite strong: In all cases, the standard errors are tiny and the F-
statistics very large.

28Kaufman (2012) uses LPS data that cover the entire U.S. from 2003 to 2007.
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the FRM market. Some aspect of the loans must be leading those borrowers to prefer loans

at the limit to loans above it. One possibility is that the negative coefficients result from

selection. The “IV” row uses the same “appraisal limit” instrument as in the FRM results.

Here we see coefficients that range from about zero, in the first two columns, to 7 and 4 basis

points, in columns 3 and 4. The standard errors are too large to rule out a negative spread,

although the point estimates are comparable to other estimates in the literature that are

also close to zero.29

It is somewhat surprising that addressing borrower selection around the limit using the IV

specification produces more positive coefficients in the ARM case and less positive coefficients

in the FRM case. Given the observed bunching at the limit among ARM borrowers, it is

also surprising to find no strong support for a positive jumbo-conforming spread among

ARM loans. While we control for many relevant aspects of mortgage contracts, such as

prepayment penalties and private mortgage insurance, it is possible that there are other

unobserved factors that are more relevant for ARMs than for FRMs and which could be

biasing these results. Consequently, the remaining discussion in this paper, including the

calculation of elasticities, focuses on the results for FRMs.

7 Elasticities

7.1 Calculating Elasticities with a Notched Budget Constraint

As discussed above, the higher mortgage rate for loans above the conforming limit creates

a “notch” in which the average price jumps discontinuously, rather than a “kink” in which

the marginal price changes discontinuously but the average price is continuous. That is,

borrowers must pay the higher interest rate on the entire balance of the loan, not just the

balance in excess of the limit. As a result, it is not appropriate to calculate an elasticity

using the change in the marginal price of the loan.

Figure 12 illustrates this point using numbers from 2006 as an example. Panel (a) shows

the overall interest rate on a 30-year FRM given the size of the loan.30 The rate jumps

at the conforming loan limit of $417,000—the dashed blue line—from 6.38 percent to 6.55

29Kaufman (2012) uses the IV approach to estimate an effect of jumbo status on initial ARM rates of
about negative 5 basis points. Fuster and Vickery (2013) use data from surveys of loan officers, which should
in principle hold borrower characteristics constant, and find effects on ARM rates of 0 to 10 basis points
between mid-2006 and mid-2007.

30For the purposes of this example, we assume that the relationship between loan size and interest rates is
constant, except at the limit where it jumps discretely. In practice we only need to assume a locally constant
relationship near the limit.
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percent.31 Panel (b) shows the equivalent monthly mortgage payment, which jumps by about

$45 at the limit.32

Although the marginal increase in payment per dollar of the loan—the slope of the line—

is only slightly higher above the limit than below it, the discontinuity implies a much more

substantial effect on incentives. To see this, let P (m, r) denote the monthly payment on a

30-year mortgage of amount m at fixed interest rate r. Then the total increase in payment

for a loan of size m > m̄ relative to a loan at the conforming limit, m̄, is equal to

P (m, r̂ + ∆r̂)− P (m̄, r̂) , (18)

where r̂ is the estimated conforming rate, and ∆r̂ is the estimated jump in the interest rate

at the limit (the jumbo-conforming spread).

The marginal increase in payment per dollar of the loan, averaged over the distance from

the limit to m, is then

P ∗(m) =
P (m, r̂ + ∆r̂)− P (m̄, r̂)

m− m̄
(19)

Panel (d) of figure 12 plots P ∗(m) for a range of different mortgage sizes. A loan that is

$1,000 over the limit faces an increase in monthly payment of about $53, or a P ∗ of 5.3 cents

per dollar of the loan above the limit. The marginal price is quite high just above the limit,

so it gives a strong incentive for borrowers to reduce their loan balances. This incentive

declines as the loan amount rises. Our estimate of ∆ ˆ̄m = .0627 for FRMs from column 2 of

table 3 implies a counterfactual loan size about $26,000 over the limit, denoted in the figure

with a solid blue line. At this point, the increase in payment relative to the limit totals

about $210, or a P ∗ of 0.8 cents per dollar of the loan. This amount is still about 0.15 cents

higher than the P ∗ on loans far above the limit, for which the notch is essentially irrelevant.

While the monthly payment is an intuitive metric, the correct theoretical price per dollar

of the loan is the underlying interest rate. Define r∗(m) such that

(m− m̄) · r∗(m) = m · (r̂ + ∆r̂)− m̄ · r̂ (20)

This r∗(m) is the implicit interest rate on the loan amount in excess of the conforming limit

31We estimate that 6.38 percent was the average rate paid on loans just under the conforming limit in
2006, while the 0.17 percentage point differential comes from the OLS estimate in column 3 of table 5. Since
this is just an example, we use the estimate of the spread for the entire sample rather than estimating it for
just 2006.

32We use a standard formula to compute the monthly payment given these parameters: P (m, r) =

m
r
12 ( r

12 +1)
360

( r
12 +1)

360−1
, where m is the mortgage amount and r is the annual interest rate.
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(m − m̄), taking into account the jump in the overall rate.33 Solving explicitly for r∗(m)

yields

r∗(m) = r̂ + ∆r̂ + ∆r̂ · m̄

m− m̄
. (21)

Equation (21) makes clear that r∗(m) is equal to the jumbo rate (r̂+∆r̂) plus a term that is

increasing the jumbo-conforming spread (∆r̂) and decreasing in the size of the loan relative

to the conforming limit (m − m̄).34 For loans just above the limit, this additional term is

very large.

Panel (c) of figure 12 plots r∗(m) for our 2006 example. We calculate that r∗(m) for a loan

$1,000 over the limit to be about 77 percent. This implies that, all else equal, borrowers

in 2006 who took out a jumbo loan for $418,000 at r̂ + ∆r̂ = 6.55% must have weakly

preferred that loan to the combination of a conforming loan for $417,000 at r̂ = 6.38% and

a second mortgage at r∗(m) = 77%. Of course, second mortgages in 2006 were available

at far lower interest rates, so the average borrower who wanted a $418,000 mortgage would

have been much better off with the conforming/second combination, ignoring any additional

costs associated with the second mortgage.35

As the borrower’s desired mortgage balance increases, however, r∗(m) declines. At our

estimate of ∆ ˆ̄m = .0627, which implies a loan size of $443,000, we calculate r∗(m) to be

9.3 percent, which is about 2.9 percentage points above the conforming rate of 6.38 percent.

By comparison, in a sample of matched first and second 30-year FRMs from 2006 in LPS,

we find that the second mortgage has a rate about 2.4 percentage points higher than the

associated first mortgage.36

Since ∆ ˆ̄m is, on average, the loan amount in excess of the conforming limit at which

borrowers are indifferent between taking out a jumbo loan and reducing their first mortgage

balance to the limit, the similarity of the implied r∗(m) and the estimated conforming/second

33This calculation is analogous to the “reduced-form approximation” to the tax elasticity proposed by
Kleven and Waseem (2013).

34For a loan that is ∆ ˆ̄m above the limit in approximate percentage terms, equation (21) simplifies to
r∗
(
m̄+ ∆ ˆ̄m

)
= r̂ + ∆r̂ + ∆r̂

∆ ˆ̄m
.

35As we discuss further in the next section, taking out a second mortgage is only one way to reduce a first
mortgage balance. Here we consider the jumbo and conforming/second options in isolation for illustrative
purposes.

36Since LPS is a loan-level data set, there is no direct link between first and second mortgages on the same
home purchase. We construct a sample of matched loans using the property type, zip code, closing date,
appraisal amount, and FICO score of the borrower, which together almost uniquely identify loans. Because
we prefer to be very conservative with this calculation, the match is quite strict: We match only about 13
percent of first loans from California in 2006 to an associated second loan. HMDA data indicate that the
national figure for 2006 was about 30 percent, and the DQ data suggest that the figure for California was
more than half.
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spread lends substantial credence to our bunching estimate. However, they need not be

exactly equal since taking out a second mortgage may entail additional unobserved costs

that make the jumbo loan slightly more attractive. Indeed, there are some jumbo loans

made only slightly above the limit, which can only be justified by having extremely low

elasticities or facing substantial adjustment costs.

Given estimates of P ∗(m) and r∗(m), we can calculate the elasticities of (first) mortgage

demand implied by our estimate of ∆ ˆ̄m. Let P ′(m̄) = P (m̄,r̂)
m̄

be the (constant) marginal

payment per dollar of the loan for loans made at the conforming interest rate r̂. Then we

can define

εrs =
∆ ˆ̄m

r∗
(
m̄+ ∆ ˆ̄m

)
− r̂

(22)

and

εP =
∆ ˆ̄m

log
(
P ∗
(
m̄+ ∆ ˆ̄m

))
− log (P ′ (m̄))

(23)

as the semi-elasticity of mortgage demand with respect to the interest rate and the elasticity

of mortgage demand with respect to the increase in payment, respectively. As before, ∆ ˆ̄m is

estimated in logs, so it represents the approximate percentage change in mortgage demand

induced by the conforming limit. The denominators in both expressions represent the change

in the effective marginal costs to borrowers induced by the limit.37 Both measures are

potentially useful. While the rate itself is the correct theoretical cost of borrowing, it is

likely that many borrowers use the monthly payment to compare different loans or to compare

owning to the monthly cost of renting (Attanasio et al., 2008).38

7.2 Estimated Elasticities of Mortgage Demand

The first two columns of table 7 report the semi-elasticities we calculate for a range of

estimates of ∆ ˆ̄m and the jumbo-conforming spread, ∆r̂. The semi-elasticities and associated

standard errors, calculated using the delta method, are shown in the lower-right portion of

the table. Each semi-elasticity is calculated from the estimate of ∆r̂ reported at the top of

that column and the estimate of ∆ ˆ̄m at the beginning of that row.

Our preferred estimate of bunching for FRMs from table 3 (0.063) is shown in the middle

row. The other two estimates (0.052 and 0.083) are the smallest and largest estimates of ∆ ˆ̄m

37We present our interest rate estimates as semi-elasticities because it is a bit more intuitive to consider
changes in interest rates in basis or percentage points.

38The two measures are not equivalent, both because of the nonlinearity of the denominators and because
the monthly payment is a nonlinear function of the interest rate
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across a range of different options for the three parameters chosen ex ante: the bin width,

the polynomial order, and the lower limit of the excluded region.39 They provide reasonable

bounds on the variation in the elasticity implied by these parameters. The jumbo-conforming

spread estimates are taken from column 3 of table 5 and correspond to the OLS (column 1)

and IV (column 2) estimates, respectively.

The estimated semi-elasticities range from about -0.015 to about -0.053, with our pre-

ferred estimates in the middle row at -0.022 and -0.31. The associated standard errors are

relatively small, although those using the noisier IV estimate of the jumbo-conforming spread

are larger than those using the OLS estimate. The semi-elasticities can be interpreted as

the percentage change in the balance of a first mortgage demanded in response to a 1 basis

point increase in the interest rate. As an example, our preferred estimates imply that an

increase in the mortgage rate from 5 percent to 6 percent—100 basis points—would lead to

a decline in first mortgage demand of 2 to 3 percent, which strikes us as a reasonably small

but plausible estimate.

Columns 3 and 4 report the analogous elasticities with respect to the marginal monthly

payment for the same set of estimates of ∆ ˆ̄m and equivalent estimates of the jumbo-

confirming spread in logs, taken from table 6. The preferred estimates in the middle row are

-0.27 using the OLS estimate of the spread and -0.35 using the IV estimate, indicating that

a one percent increase in payment leads to about a third of a percent decline in mortgage

demand.

8 How Do Borrowers Adjust?

Although the elasticities reported in table 7 are valid estimates of the amount by which

borrowers reduce their first mortgage balance in response to the jumbo-conforming spread,

they do not provide any information regarding the margins along which this adjustment

occurs. In this section we present suggestive evidence that helps to distinguish between

several methods that borrowers may be using to adjust their mortgage balance.

There are three primary channels through which a borrower can reduce the size of her

first mortgage, each of which have different implications for the interpretation of our main

results. First, a borrower could simply bring more cash to the table, making a larger down

payment and taking out a smaller loan.40 Second, she could take out an additional mortgage

39We considered bin widths of 0.01, 0.025 and 0.05; polynomials of order 7, 9, 11, and 13; and lower limits
of 0.025, 0.05, 0.075 and 0.1.

40“Putting up more cash” could be accomplished in many ways, including taking money out of savings,
reducing current consumption, or taking out non-mortgage debt. We do not observe any data that would
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for the amount of debt desired in excess of the conforming limit. Finally, she could spend

less on housing, which (holding leverage constant) would lead her to take out a smaller

mortgage.41 While borrowers likely use various combinations of these three strategies to

lower their mortgage balances, if we consider the extreme cases in which only one of the

three is used, we can provide a rough sense of the extent to which each may be contributing

to the bunching behavior we observe.

To measure the extent to which borrowers are using second mortgages to lower their first

mortgage balance, figure 13 plots the number of transactions financed using second loans

as a function of the associated first mortgage value relative to the conforming limit for all

fixed-rate first mortgages in the DQ sample. Consistent with the notion that many of the

bunching borrowers take out second mortgages, there is a sharp spike in the number of

transactions which are financed with two loans precisely at the limit. The plot suggests that

roughly 25,000 more second loans were taken out in the bin at the conforming limit relative

to the bin just below it, which provides a reasonable counterfactual. Returning to table 3, we

estimated that about 70,000 FRM borrowers bunched at the limit, suggesting that roughly

35 percent of FRM borrowers who bunch do so by taking out a second mortgage. These

borrowers are presumably shifting debt from their first mortgage onto their second, holding

combined LTV roughly constant while reducing their first-mortgage LTV.

The remaining 65 percent of “excess” borrowers must be either putting up more cash, or

spending less on housing than they otherwise would. If they are spending less on housing

while holding their leverage roughly constant, then both their first and combined LTVs

should be little changed relative to the counterfactual in which the conforming limit does not

exist.42 Therefore, if all of the bunching borrowers were either taking out second mortgages or

buying cheaper houses, then we would expect the average combined LTV at the conforming

limit to be about the same as in nearby bins. Figure 14, which plots the combined LTV

against the first mortgage amount, makes clear that this (admittedly extreme) scenario is

far from true. The combined LTV at the limit is about 75 percent, well below the 80 to 85

percent that would be predicted based on the red line, which is a polynomial fit using the

data outside of the same excluded region that was used to estimate bunching in figure 9.43

allow us to distinguish between these cases.
41This could happen either through substitution to a lower quality home or through direct price negotiation

with the seller.
42Some borrowers may buy a cheaper house but target an ideal monthly payment, rather than an ideal

LTV. Such borrowers would slightly reduce their LTV when they bunch, but by much less than buying the
same house at the same price.

43The 85 to 90 percent combined LTVs to the right of the limit, which are higher than any of the other
points on the plot, also stand out. One possibility is that the borrowers in these bins who do not bunch
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Thus, a significant portion of the 65 percent of borrowers who bunch without a second

mortgage must be doing so by putting up more cash as opposed to spending less on housing.

In the most extreme case, all of these borrowers are putting up more cash. Since both

putting up more cash and taking out a second mortgage reduce a borrower’s first-mortgage

LTV while spending less on housing does not, we can gauge the plausibility of this extreme

case by examining the relationship between first-mortgage LTV ratios and loan size near the

limit. To do so, figure 15 plots the first-mortgage LTV against the first mortgage amount.

This figure is analogous to figure 14 except for the blue “X”, which is a first-mortgage LTV

calculated under the assumption that none of the bunching borrowers adjust their housing

expenditure.44 Somewhat surprisingly, the observed LTV at the limit is even lower than

under the extreme scenario used to calculate the “X”, in which no borrower adjusts her

house price. Even allowing for some noise in the estimates, this comparison suggests that

very few borrowers who bunch at the limit do so by buying cheaper houses. This LTV result

is consistent with the results in Adelino et al. (2012), who also document that borrowers

who purchase homes using mortgages at the conforming limit have substantially lower first

loan LTVs than those just above the limit.

Although these calculations suggest that there is no direct impact of the interest rate

differential on house prices and the demand for housing itself, we do not necessarily want

to draw that inference, for three reasons. First, the LTV calculations above are “back of

the envelope” and there are several untested assumptions involved. Second, the interest

rate differential at the limit is relatively small and may not be as informative about larger

changes in rates over time. Finally, we think that another paper, Adelino et al. (2012), is

likely to be better suited to studying the effects of rates on house prices. They estimate

the elasticity of house prices to interest rates by following similar houses over time as they

become more or less difficult to finance with a conforming loan at a constant LTV of 80

percent, essentially a difference-in-difference approach rather than the bunching approach

have different characteristics than those who do and are thus a selected sample. Indeed, these borrowers are
clearly somewhat “abnormal”, in that they do not bunch despite the seemingly large gains from doing so.
However, as we know from figure 9, there are relatively few borrowers remaining in these bins.

44To calculate this LTV, we first generate a “counterfactual” mean house price for each loan size bin by
fitting a 5th degree polynomial to the observed mean price in each bin omitting the bins in the excluded
region used to estimate bunching. We then take the weighted average of these mean counterfactual house
prices in the bin containing the limit and in each bin to the right of the limit in the excluded region. In
calculating this average, the weight assigned to the mean price at the limit is the estimated counterfactual
bin count from the bunching procedure and the weights assigned to each of the mean prices to the right of
the limit are equal to the difference between the counterfactual and observed bin counts from figure 9. To
calculate the LTV plotted in the figure, we then compute the average conforming limit for all loans observed
at the limit and divide by the weighted average counterfactual house price.
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we follow. This approach has advantages over ours for this particular question, especially

because we cannot observe borrowers who drop out of the market entirely (the extensive

margin).

Regardless of how they do so, the roughly two-thirds of borrowers who bunch at the

conforming limit without the use of a second mortgage must be reducing their total mortgage

debt. Unfortunately, we only know the average reduction in first loan size (∆ ˆ̄m) among

marginal bunching borrowers, so we cannot solve for the response of total mortgage debt.

If, however, the fraction of marginal bunching individuals who take out a second loan is the

same as the fraction who do so in the population of all bunchers, then scaling down our

elasticity estimates by a factor of one-third should provide a rough estimate of the effect of a

change in rates on total mortgage debt. Specifically, multiplying our preferred first mortgage

semi-elasticity estimates of -0.022 and -0.031 by two thirds yields total debt semi-elasticities

of about -0.015 and -0.021. That is, a one percentage point increase in rates should reduce

total mortgage debt by between 1.5 and 2 percent.

9 Policy Application: GSE Guarantee Fee Increases

As noted in the introduction, the magnitude of borrower responses to changes in mortgage

interest rates has important implications in several domains of economic policy. In this

section, we provide some basic calculations using our estimated mortgage demand elasticities

to illustrate how these estimates could be used to gauge the potential effects of one recently

proposed policy change.

In February 2012, the Federal Housing Finance Agency (FHFA) published its “Strategic

Plan for Enterprise Conservatorships,” outlining the steps that the agency plans to take to

fulfill its legal obligations as conservator for the GSEs. As part of this plan, the FHFA

established a goal of gradually reducing the dominant role that the GSEs currently play in

the mortgage market. One of the primary proposed mechanisms for achieving this goal is a

series of increases in the GSEs’ guarantee fee (or “g-fee”) up to the level that “one might

expect to see if mortgage credit risk was borne solely by private capital” (FHFA, 2012).

The g-fee is the amount that Fannie Mae and Freddie Mac charge mortgage lenders

in order to cover the costs associated with meeting credit obligations to investors in GSE

mortgage-backed securities (MBS). It is typically collected in two components: an upfront

fee assessed as a fraction of the balance of the loan at origination and a recurring annual fee

equal to a fraction of the outstanding principal balance remaining at the end of each year. In

2012, g-fees from single-family mortgages generated roughly $12.5 billion in revenue for the
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GSEs, up 12% from the previous year (FHFA OIG, 2013). The fee has risen several times in

recent years, both by Congressional mandate and as part of the first steps in implementing

FHFA’s strategic plan.

In December 2013 the FHFA announced plans to increase the recurring fee by an addi-

tional 10 basis points for all loans and to reduce the up-front fee by 25 basis points for loans

originated in all but four states.45 The FHFA estimated that the combined effect of these

increases and decreases would generate an overall average increase in the effective annual

g-fee of roughly 11 basis points (FHFA, 2013).46 A report by the FHFA Inspector General

noted that “Significant guarantee fee increases, under some scenarios, could result in higher

mortgage borrowing costs and dampen both consumer demand for housing and private sector

interest in mortgage credit risk.”(FHFA OIG, 2013).47

Our estimates of the interest rate elasticity of mortgage demand can be used to gauge the

potential magnitude of any reductions in mortgage borrowing resulting from the proposed

g-fee increases. To carry out this calculation we make three simplifying assumptions. First,

we assume that the full 11 basis point increase in the g-fee would be passed through to

borrowers in the form of higher interest rates on conforming mortgages. Second, we assume

that this increase in rates for conforming mortgages would not have any general equilibrium

effects on interest rates for non-conforming loans. Finally, we assume that our estimates of

the total mortgage demand (semi)-elasticity of 1.5 to 2 apply at all points of the mortgage

size distribution, not just at the conforming limit. Under these assumptions, our estimates

imply that the proposed increase in the g-fee would reduce the total dollar volume of fixed-

rate conforming mortgage originations by roughly 0.17 to 0.22 percent relative to what it

otherwise would have been.

Under the same set of assumptions, we can also provide an estimate of the cumulative

effects of g-fee increases to date. Between 2006 and the first quarter of 2013, the g-fee rose

from approximately 20 basis points to 50 basis points, with much of the rise occurring in two

waves in 2012 (FHFA OIG, 2013). Multiplying the 30 basis point differential by our elasticity

implies a reduction in the dollar volume of fixed-rate conforming mortgage originations of

0.45 to 0.60 percent. While our elasticity is well suited to examining the direct effects of

these relatively small changes in fees, we emphasize that we cannot draw any inference on

45The four states for which the up-front fee would not be reduced are Connecticut, Florida, New Jersey,
and New York. The fee would remain higher in these states to compensate for the greater costs associated
with lengthy foreclosure timelines there.

46FHFA reports this 11 basis point number as the combined overall average effect of an approximate 14
basis point increase in the g-fee for 30-year mortgages and a 4 basis point increase for 15-year mortgages.

47The future of this plan remains uncertain, particularly after it was delayed by incoming director Mel
Watt in January 2014.
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more general questions, such as how high the fees would need to rise to draw private capital

back into this part of the MBS market.

10 Conclusion

In this paper, we use techniques for estimating behavioral responses from bunching at budget

constraint nonlinearities in order to estimate the effects of the conforming loan limit on first

mortgage demand. We combine these estimates with estimates of the jumbo-conforming

spread to calculate the interest rate (semi-)elasticity of mortgage demand. Our estimates

imply that size of a borrowers first mortgage falls by between 2 and 3 percent in response to

a 1 percentage point increase in rates.

Accounting for the third of bunching borrowers who take out second mortgages suggests

that total mortgage demand falls by between 1.5 and 2 percent in response to a 1 percentage

point increase in the first mortgage interest rate. The remaining two-thirds of bunchers

appear to be bringing more cash to the table rather than spending less on housing. Applying

these elasticity estimates to recently proposed increases in GSE guarantee fees implies a

reduction in fixed-rate conforming mortgage originations of approximately one-fifth of one

percent. The implied cumulative effect of similar increases that have occurred over the past

several years has been to reduce originations by approximately one-half of one percent.

We conclude by pointing to two potentially useful avenues for future research. First,

our estimates are necessarily limited by their context. A large number of salient factors,

especially the presence of adjustment costs and the availability of second mortgages, affect

how borrowers respond to the limit and, in turn, our estimates of the demand elasticity. A

better understanding of the importance of these factors for our estimates is required before

they can be applied to more general policy questions. Second, the differential responses of

minority versus non-minority and high-income versus low-income borrowers suggests that

there could be heterogeneity in elasticities or adjustment costs along a wide range of charac-

teristics. Understanding this heterogeneity may be as important as pinning down the overall

average elasticity of demand.
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Fig. 5.—Estimating Bunching and the Counterfactual Distribution. This figure provides a graphical illustra-
tion of the bunching estimation procedure. The solid black line represents the empirical loan size distribution,
where loan amounts are centered at the conforming limit. The heavy dashed red line represents the estimated
counterfactual distribution which is obtained by fitting a polynomial to the empirical distribution, omitting
the contribution of the loans in the region between mL and mU . Bunching (B̂) is estimated as the difference
between the observed and counterfactual distributions in the excluded region at and to the left of the conform-
ing limit. The upper limit of the excluded region is chosen to minimize the difference between the amount of
missing mass in the excluded region to the right of the limit (M̂) and the amount of bunching.
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Fig. 6.—Bunching at the Conforming Limit, All Loans. This figure plots the empirical and counterfactual
distribution of (log) loan size relative to the conforming limit for all loans. Estimation was carried out in
the full sample of DQ loans, but the figure shows only loans within 50 percent of the conforming limit. The
connected black line is the empirical distribution. Each dot represents the count (fraction) of loans in a
given 1-percent bin relative to the limit in effect at the time of origination. The heavy dashed red line is the
estimated counterfactual distribution obtained by fitting a 13th degree polynomial to the bin counts, omitting
the contribution of the bins in the region marked by the vertical dashed gray lines. The figure also reports
the estimated number of loans bunching at the limit (B) and the average behavioral response among marginal
bunching individuals (∆m), calculated as described in section 5.1.
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Fig. 9.—Bunching at the Conforming Limit, Fixed-Rate Mortgages Only. This figure plots the empirical and
counterfactual distribution of (log) loan size relative to the conforming limit for fixed-rate mortgages only.
Estimation was carried out in the full sample of DQ loans with fixed interest rates, but the figure shows only
loans within 50 percent of the conforming limit. The connected black line is the empirical distribution. Each
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of origination. The heavy dashed red line is the estimated counterfactual distribution obtained by fitting a
13th degree polynomial to the bin counts, omitting the contribution of the bins in the region marked by the
vertical dashed gray lines. The figure also reports the estimated number of loans bunching at the limit (B)
and the average behavioral response among marginal bunching individuals (∆m), calculated as described in
section 5.1.
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Fig. 10.—Bunching at the Conforming Limit, Adjustable-Rate Mortgages Only. This figure plots the empirical
and counterfactual distribution of (log) loan size relative to the conforming limit for adjustable-rate mortgages
only. Estimation was carried out in the full sample of DQ loans with adjustable interest rates, but the
figure shows only loans within 50 percent of the conforming limit. The connected black line is the empirical
distribution. Each dot represents the count (fraction) of loans in a given 1-percent bin relative to the limit
in effect at the time of origination. The heavy dashed red line is the estimated counterfactual distribution
obtained by fitting a 13th degree polynomial to the bin counts, omitting the contribution of the bins in the
region marked by the vertical dashed gray lines. The figure also reports the estimated number of loans bunching
at the limit (B) and the average behavioral response among marginal bunching individuals (∆m), calculated
as described in section 5.1.
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Fig. 12.—Effective Marginal Interest Rate and Mortgage Payment Example. This figure shows how the
effective marginal interest rate and marginal mortgage payment per dollar of the loan varies as a function of
the distance between the loan amount and the conforming limit. The vertical dashed blue line in each panel
is the conforming limit in 2006 and the solid vertical blue line denotes our estimate of the average behavioral
response (∆ ˆ̄m). The conforming interest rate is calculated based on the average rate for conforming loans
just below the limit in 2006. The jumbo-conforming spread is taken from our pooled OLS estimate in column
3 of table 5.
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Fig. 13.—Number of Second Mortgages by First Mortgage Amount. This figure plots the number of trans-
actions financed using two loans as a function of the first loan amount relative to the conforming limit. Each
dot represents the number of transactions in a given 1-percent bin relative to the limit in effect at the time of
origination. Sample includes only transactions with a fixed-rate first mortgage.
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Fig. 14.—Combined Loan-to-Value Ratio by First Mortgage Amount. This figure plots the average combined
loan-to-value ratio (CLTV) as a function the first loan amount relative to the conforming limit. Each dot
represents the average CLTV in a given 1-percent bin relative to the limit in effect at the time of origination.
The heavy dashed red line is the counterfactual mean CLTV obtained by fitting a 5th degree polynomial to the
bin averages, omitting the contribution of the bins in the region marked by the vertical dashed gray lines. The
excluded region is the same region used to estimate bunching for the sample of fixed-rate mortgages. CLTV
is calculated as the ratio of the sum of up to three mortgages used to finance a transaction to the recorded
purchase price. Sample includes only transactions with a fixed-rate first mortgage.
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Fig. 15.—First Mortgage Loan-to-Value Ratio by First Mortgage Amount. This figure plots the average first
mortgage loan-to-value ratio (LTV) as a function the first loan amount relative to the conforming limit. Each
dot represents the average LTV in a given 1-percent bin relative to the limit in effect at the time of origination.
The heavy dashed red line is the counterfactual mean LTV obtained by fitting a 5th degree polynomial to
the bin averages, omitting the contribution of the bins in the region marked by the vertical dashed gray lines.
The excluded region is the same region used to estimate bunching for the sample of fixed-rate mortgages. The
blue “X” is an LTV calculated assuming that borrowers who bunch at the limit do so without adjusting their
housing price. See the text for the details of this calculation. LTV is calculated as the ratio of the first loan
amount to the recorded purchase price. Sample includes only transactions with a fixed-rate first mortgage.

53



TABLE 1
Summary Statistics, DataQuick Sample

Full
Sample

Within $50k
of CLL

(1) (2) (3) (4)
Mean SD Mean SD

Transaction and Loan Characteristics
First Loan Amount ($1,000) 349 (229) 342 (55)
Transaction Price ($1,000) 465 (340) 449 (123)
Has Second Loan 0.37 (0.48) 0.41 (0.49)
First Loan ARM 0.49 (0.50) 0.48 (0.50)

Housing Characteristics
Square Footage 1,764 (4,614) 1,787 (2,979)
Property Age (Years) 29 (25) 29 (24)
Number of Bedrooms 3.2 (1.3) 3.3 (1.4)
Number of Bathrooms 2.1 (1.0) 2.2 (0.9)

Borrower Characteristics
Applicant Income ($1,000) 142 (181) 133 (127)
White 0.50 (0.50) 0.50 (0.50)
Black 0.03 (0.18) 0.03 (0.17)
Hispanic 0.21 (0.41) 0.19 (0.39)

Observations 2,739,775 637,369

Note.—Means and standard deviations for select variables from DataQuick data set.
Columns (1) and (2) are based on the full sample of all DataQuick transactions recorded
in California between 1997 and 2007. Columns (3) and (4) restrict the sample to only
transactions with first mortgage amounts within $50,000 of the conforming limit in ef-
fect at the time of origination. All dollar amounts are in real 2007 dollars. Statistics
for transaction and housing characteristics are calculated using all available transactions.
Statistics for borrower characteristics are calculated using only the subset of transactions
that match to a HMDA loan application. See text for details on sample construction.
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TABLE 2
Summary Statistics, LPS Sample

FRMs ARMs

(1) (2) (3) (4)
Full

Sample
Within $50k

of CLL
Full

Sample
Within $50k

of CLL

Interest Rate (Initial for ARMs) 6.69 6.70 5.05 5.04
(0.91) (0.90) (2.13) (2.09)

Jumbo 0.17 0.14 0.50 0.39
(0.38) (0.35) (0.50) (0.49)

First Loan Amount ($1,000) 278.03 322.55 452.13 376.95
(174.40) (56.81) (283.42) (47.29)

Appraisal Amount ($1,000) 396.50 447.16 611.28 497.01
(281.31) (156.74) (438.51) (105.31)

Loan-to-Value Ratio 74.09 76.09 76.31 77.33
(16.35) (13.63) (10.07) (9.17)

Debt-to-Income Ratio 35.62 36.79 35.51 36.50
(12.47) (11.96) (11.96) (11.46)

Missing DTI Ratio 0.70 0.75 0.45 0.45
(0.46) (0.44) (0.50) (0.50)

FICO Score 731.18 731.70 719.70 717.97
(51.81) (49.98) (52.82) (52.52)

Missing FICO Score 0.32 0.35 0.20 0.22
(0.47) (0.48) (0.40) (0.41)

Term (Months) 345.91 350.14 365.78 365.63
(52.58) (46.44) (30.73) (28.83)

30-Year 0.90 0.93 0.93 0.94
(0.30) (0.26) (0.25) (0.23)

Observations 1,062,164 264,654 947,565 224,475

Note.—Means and standard deviations (in parentheses) for select variables from the LPS data set.
Columns (1) and (3) are based on the full sample of fixed-rate and adjustable-rate purchase mortgages
originated in California between 1997 and 2007. Columns (2) and (4) restrict these samples to only loans
that fall within $50,000 of the conforming limit in effect at the time of origination. All dollar amounts
are in real 2007 dollars. See text for details on sample construction.
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TABLE 3
Bunching Estimates by Loan Type

(1) (2) (3)
Combined FRMs ARMs

Bunched Loans (B̂) 84183.8 68306.3 16174.3
(2687.0) (1561.6) (1446.7)

Behavioral Response (∆ ˆ̄m) 0.0378 0.0627 0.0144
(0.0018) (0.0025) (0.0014)

Excess Mass (B̂/
∑0

j=L n̂j) 3.781 6.266 1.436

(0.175) (0.253) (0.141)

Upper Limit (mH) 0.160 0.160 0.080
(0.028) (0.021) (0.012)

Note.—Each column reports the estimated number of loans bunching
at the conforming limit (B̂), the average (log) shift in mortgage balance
in response to the conforming limit among marginal bunching individuals
(∆ ˆ̄m), the excess mass at the conforming limit (B̂/

∑0
j=L n̂j), and the up-

per limit of the excluded region used in estimation (mL). Estimates are
reported separately for the combined sample of all loans (column 1), fixed-
rate mortgages only (column 2), and adjustable-rate mortgages only (col-
umn 3). Standard errors (in parentheses) were calculated using the boot-
strap procedure described in section 5.1.
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TABLE 4
Bunching Estimates by Borrower Type, FRMs Only

(1) (2) (3) (4)
High-Income Low-Income Non-Minority Minority

Bunched Loans (B̂) 33187.7 8899.3 34013.6 3715.2
(548.4) (464.6) (736.5) (150.3)

Behavioral Response (∆ ˆ̄m) 0.0780 0.0487 0.0741 0.0378
(0.0028) (0.0036) (0.0033) (0.0019)

Excess Mass (B̂/
∑0

j=L n̂j) 7.801 4.868 7.406 3.777

(0.276) (0.362) (0.328) (0.196)

Upper Limit (mH) 0.180 0.120 0.180 0.110
(0.021) (0.019) (0.023) (0.015)

Note.—Each column reports the estimated number of loans bunching at the conforming limit (B̂),
the average (log) shift in mortgage balance in response to the conforming limit among marginal bunch-

ing individuals (∆ ˆ̄m), the excess mass at the conforming limit (B̂/
∑0

j=L n̂j), and the upper limit of
the excluded region used in estimation (mL). Estimates are reported separately for high- and low-
income borrowers and for minority and non-minority borrowers. High-income borrowers are those who
report an income on their loan application that is higher than the median in the pooled sample. Low
income borrowers are those below the median. Minority borrowers are those who identify as either
black or Hispanic on their loan applications. Sample includes only transactions with a fixed-rate first
mortgage which could be successfully matched to a mortgage application in the HMDA data and for
which the borrower reported their income as well as both a race and an ethnicity. Standard errors (in
parentheses) were calculated using the bootstrap procedure described in section 5.1.
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TABLE 5
Jumbo-Conforming Spread Estimates, Percentage Points

(1) (2) (3) (4)

Baseline Splines
Within $50k

of CLL
Within $10k

of CLL

Fixed-Rate Mortgages

OLS 0.179 0.182 0.171 0.172
(0.002) (0.002) (0.014) (0.038)

IV 0.107 0.121 0.118 0.126
(0.010) (0.009) (0.028) (0.056)

Observations 1,061,738 1,061,738 263,641 87,617

Adjustable-Rate Mortgages

OLS -0.076 -0.090 -0.299 -0.362
(0.009) (0.009) (0.037) (0.083)

IV -0.001 0.004 0.074 0.040
(0.020) (0.019) (0.054) (0.109)

Observations 692,233 692,233 157,779 39,542

Note.—Standard errors in parentheses. Estimates of jumbo-conforming spread using
OLS and IV with the “appraisal limit” used as an instrument for the CLL, as described
in the text. Controls for distance to CLL (cubic), LTV ratio, DTI ratio, missing LTV
and DTI ratios, FICO score, missing FICO score, PMI, prepayment penalty, and mort-
gage term, as well as month by zip code fixed effects. Column 1 includes linear effects of
LTV and DTI ratios. Column 2 includes splines in LTV and DTI ratios, as well as FICO
score. Columns 3 and 4 limit the sample to loans near the CLL.
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TABLE 6
Jumbo-Conforming Spread Estimates, Log Points

(1) (2) (3) (4)

Baseline Splines
Within $50k

of CLL
Within $10k

of CLL

Fixed-Rate Mortgages

OLS 0.026 0.027 0.023 0.025
(0.000) (0.000) (0.002) (0.006)

IV 0.017 0.018 0.017 0.017
(0.002) (0.001) (0.005) (0.010)

Observations 1,061,738 1,061,738 263,641 87,617

Adjustable-Rate Mortgages

OLS -0.051 -0.053 -0.168 -0.210
(0.003) (0.003) (0.015) (0.034)

IV 0.005 0.009 0.014 0.002
(0.008) (0.008) (0.022) (0.045)

Observations 686,970 686,970 156,403 39,198

Note.—Standard errors in parentheses. Estimates of jumbo-conforming spread, in log
points, using OLS and IV with the “appraisal limit” used as an instrument for the CLL,
as described in the text. Controls for distance to CLL (cubic), LTV ratio, DTI ratio,
missing LTV and DTI ratios, FICO score, missing FICO score, PMI, prepayment penalty,
and mortgage term, as well as month by zip code fixed effects. Column 1 includes linear
effects of LTV and DTI ratios. Column 2 includes splines in LTV and DTI ratios, as well
as FICO score. Columns 3 and 4 limit the sample to loans near the CLL.
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TABLE 7
Interest Rate and Monthly Payment Elasticities of Mortgage Demand, FRMs

Only

(1) (2) (3) (4)
Interest Rate Semi-Elasticity (εrs) Payment Elasticity (εP )

∆r̂ ∆ log r̂

∆ ˆ̄m
0.171 0.118 0.023 0.017

(0.014) (0.028) (0.002) (0.005)

0.052 -0.015 -0.022 -0.188 -0.246
(0.003) (0.002) (0.005) (0.022) (0.064)
0.063 -0.022 -0.031 -0.267 -0.351

(0.003) (0.002) (0.008) (0.028) (0.091)
0.083 -0.037 -0.053 -0.445 -0.589

(0.004) (0.004) (0.013) (0.051) (0.156)

Note.—Table reports estimates and standard errors (in parentheses) of the interest rate semi-
elasticity and monthly payment elasticity of mortgage demand for a range of different jumbo-
conforming spreads and behavioral responses estimated from bunching. Each cell reports the elastic-
ity implied by the estimated (log) behavioral response (∆ ˆ̄m), and corresponding jumbo-conforming
spread estimated in percentage points (∆r̂) and in logs (∆ log r̂), respectively. Standard errors for
the bunching estimates were calculated using the bootstrap procedure described in section 5.1. Stan-
dard errors for the elasticities were calculated using the delta method.

60


