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Production is the beating heart of commerce. But it is a double-edged sword, 
supplying necessities and amenities for humanity while depleting the global 
commons that sustain life on earth. Our aim in the Accelerating Sustainable 
Production project is to leverage production as a tool for meeting the United 
Nations Sustainable Development Goals (SDGs) and as a source for business 
competitiveness. The opportunities for doing so have expanded with the advent 
of Fourth Industrial Revolution technology – an ecosystem that holds a dizzying 
amount of innovation across digital, physical and biological spheres. As the 
volume of innovation explodes, the cost of advanced technologies is plummeting. 
Consider genome sequencing: the first human genome cost $2.7 billion to 
sequence; today, it costs $1,000.

The combined effects of technology and its free-falling cost are accelerating 
progress exponentially. But which will play the bigger role in impacting SDGs and 
boosting business competitiveness? That is the central question of this White 
Paper and the work conducted by the World Economic Forum in collaboration 
with Accenture. In this paper, we examine technological advancements as 
leverage points (or obstacles) for achieving sustainable production from cradle 
to factory gate. The result is something entirely new – a framework, by industry, 
for prioritizing innovation wrought by the Fourth Industrial Revolution. Such a 
framework helps quantify the potential for sustainable value creation so that 
governments and businesses can design their growth strategies accordingly. It 
also enables them to scale their contribution towards the United Nations 2030 
Agenda for Sustainable Development, thus enhancing economic and industry 
competitiveness.

This collaborative effort demonstrates how to harness the technological progress 
of the Fourth Industrial Revolution for sustainable innovation and value creation 
in four manufacturing industries and across major global regions. We started our 
work with these sectors and geographies because they serve as solid examples 
for exploring the sustainability agenda from the perspective of production systems.

Our ambition is to put the findings and assets to use in a government-mandated 
pilot on sustainable production value assessment. Looking ahead to our vision for 
the third year of the project, our objective is to work towards the scoping of on-
the-ground interventions based on regional in-depth analyses. 
 

Helena Leurent
Head of Future of Production System Initiative,  
Member of the Executive Committee,  
World Economic Forum

Omar Abbosh 
Chief Strategy Officer,  
Accenture

Preface
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A world of opportunities is emerging and the “future” of 
production may as well be “today”. Decades ago, science 
alerted us to the unsustainability of human economic 
activities and consumption patterns. Incremental gains 
in resource efficiency were offset by global consumption 
growth, in an increasingly globalized economy with 
mostly “take-make-dispose” business models. The 
global economy was found to be too resource intensive 
– incompatible with our climate change mitigation 
goals or the earth’s finite resources – and consuming 
nearly twice what the planet can regenerate each year. 
Social externalities were observed, too; jobs were lost 
or displaced, and new ones took too long to emerge in 
multiple markets. It is now time to be bold in our ambition 
to turn these patterns around – to be not only optimistic, 
but even confident. The time has come to lead, implement 
and transform socio-economic systems of production as 
we enjoy a unique combination of favourable conditions: 
social momentum, public-sector understanding, 
technology and investment resources. The 2018-2030 era 
is no doubt going to be a fantastic one of opportunities 
for many. Challenges will persist and evolve, but they can 
mostly reside only in our own ways of thinking, our lack 
of imagination or determination. I am proud to contribute 
this foreword to the white paper, the fruit of intense 
collaboration between a variety of stakeholders. May it 
inspire all of us to implement a “One-Planet-Compatible-
Future-of-Production”. Now. 

Annette Clayton, Chief Executive Officer and President, North 
America Operations; Chief Supply Chain Officer, Schneider 
Electric, USA

In addition to the promise of technology-led gains and 
efficiencies, one of the key drivers ensuring that the Fourth 
Industrial Revolution benefits everyone is its delivery of 
more sustainable production and consumption around 
the world. The world’s track record has not been good; in 
the past, profits from destroying the planet were privatized 
while the cost for addressing the damage was socialized. 
Now, we are at a crossroads where this pattern can be 
reversed. Government and business must become closer 
partners in delivering on the shared compact of the United 
Nations 2030 Agenda for Sustainable Development, with 
consumers being beneficiaries of a more enlightened 
approach to sustainability issues. This White Paper 
represents a significant step in this direction and serves 
as a pragmatic, forward-looking approach to achieving 
a world where environmental well-being and business 
competitiveness go hand in hand. 

Foreword The ideas represented in these pages are a natural 
extension of the theme of the World Economic Forum 
Annual Meeting 2018: Creating a Shared Future in a 
Fractured World. The aim of the meeting is to bring people 
together, bridging political and commercial factions to 
address the biggest challenges of our times.

Far too often, sustainability has been viewed as a cost. 
That perception needs to change to ensure we collectively 
understand that it can also represent a major business 
opportunity, and should be an important component of any 
modern business plan. In some areas, we are on the right 
track. Since 2016, the world has invested more in solar and 
wind technology than it has in coal and oil, but we need 
to stay the course. This effort and others will help leverage 
the United Nations Sustainable Development Goals as a 
compass to steer the world towards a more sustainable 
future. 

Arancha González Laya, Executive Director, International Trade 
Centre (ITC), Geneva

The Fourth Industrial Revolution has the potential to 
dramatically change the course of economic development 
but also the distribution of wealth. New technologies 
are enabling ever higher levels of productivity and 
efficiency. On the other hand, low- and middle-skilled 
jobs are increasingly under threat of replacement. Our 
role as governmental leaders is to ensure that no one is 
left behind. It is crucial to help industrial SMEs to start 
transformation as well as integrate small and medium 
technology suppliers to release their full potential. At the 
same time, the key challenge is to address the problem of 
the digital competence gap. The role of national as well as 
international policy is to make sure that this great revolution 
we are witnessing will bring benefits for all. 

Mateusz Morawiecki, Prime Minister and Minister of Economic 
Development and Finance of Poland

The production of the future will cater to rapidly evolving 
consumer needs by delivering products and services within 
a well-designed supply chain that fully embeds innovation 
and sustainability. At P&G, we are committed to delivering 
products and services that make everyday life better for 
people around the world. We believe there is value in 
embracing the UN SDGs when it comes to strengthening 
competitiveness and value creation. 

We need to fully leverage digital, physical and biological 
tech advancements to be able to predict and capture 
consumer demand, and connect it seamlessly through 
production operations and materials sourcing in a blueprint 
that minimizes the environmental footprint. This will require 
reskilling and empowering our workforce to harness the 
new forces of technology. When doing this responsibly, we 
create value across the chain, using resources sustainably 
and helping our surrounding communities prosper.  

Mohamed Samir, President, India, Middle East and Africa, 
Procter & Gamble, United Arab Emirates
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The end goal of Accelerating Sustainable Production, a 
project of the World Economic Forum System Initiative 
on Shaping the Future of Production, is to harness 
innovation to strengthen competitiveness while delivering 
increased efficiency, improved human well-being and less 
environmental damage. Getting there will require a new 
level of public-private collaboration, as well as tapping 
into the developments wrought by the combined effects 
of biological, physical and digital technologies to create 
realities previously thought to be unobtainable. 

The project is a guide for optimizing the benefits of 
the Fourth Industrial Revolution. It helps countries and 
businesses identify ways to transform their production 
systems to achieve sustainable growth while supporting 
their commitments under the United Nations Sustainable 
Development Goals (SDGs) and boosting their competitive 
capabilities. 

Fourth Industrial Revolution developments and the 
United Nations Sustainable Development Goals

Work in this initial phase focuses on four industries. A 
selection of low- and high-tech manufacturing sectors were 
chosen based on the interest of the project community and 
the opportunities for higher environmental productivity.1 We 
identified the technological developments that have a high 
potential to deliver value when seen through the lens of the 
SDG targets.2 Phases two and three will focus on applying 
this knowledge to quantify the economic value and initiate 
on-the-ground projects.

Which developments of the Fourth Industrial Revolution 
hold the most promise for accelerating sustainable 
production? Many were specific to a given industry or 
geography, and are discussed in detail in Chapter One. 
While no single technology is likely to constitute a strategy 
for addressing challenges of production sustainability in 
any industry, five cross-industry trends emerged:

Advanced remanufacturing: Innovation in physical and 
digital technologies is fast becoming an enabler for closing 
the loop with cost-effective returns processing, robotic 
disassembly and advanced material sorting. Connected 
devices feed information back to design and engineering 
to improve product durability and performance. A cluster 
of technologies – augmented workforce systems and 
cobotics, in combination with digital track-and-trace 
systems to manage reverse logistics – can drive substantial 
triple-bottom-line value, boost a brand’s reputation and 
mitigate growing supply chain risks.

Executive summary 

New materials: These include new types of packaging, 
green electronics and alternatives to plastic, leather and 
meat. The materials are poised to play a greater role across 
industries in the near term as they become better (and 
cheaper) than traditional materials, thanks to advances 
in nano- and biotech, green chemistry and smart lab 
technology. Advances, however, will also depend on the 
speed with which new materials processing technology 
and investment can be scaled from research and 
development to commercial production capacity. 

Advanced agriculture: Increased demand on land and 
water for organic feedstock for manufacturing (e.g. bio-
based plastics) makes agri-food systems a cross-industry 
issue. The greatest source of innovation is in precision and 
automated agriculture and biotech, where the internet of 
things, data and analytics are coupled with crop science to 
optimize farming decisions on everything from fertilizer and 
irrigation to harvesting time and seed spacing. Advances 
drive substantial yield gains and, with planning, could 
help address food scarcity while safeguarding human and 
ecosystem health.

Factory efficiency: Near-dark factories use automated 
processes, from smart warehousing to advanced additive 
manufacturing, to increase resource productivity, shorten 
supply chains and reduce consumption of non-renewable 
resources. While they allow manufacturing to move closer 
to demand markets, care must be taken to manage labour 
market changes.

Traceability: From tracing the origin of spare parts in 
the automobile industry to timestamping coffee cherries, 
technologies such as blockchain coupled with sensors 
and data tags are enabling companies to provide verified 
information about the materials, processes and people 
behind products. Enabling data flows through supply 
chains is critical for building trust, eliminating low-value-
added processes, ensuring fair earnings for smaller 
suppliers, and enabling remanufacturing and recycling 
through reverse logistics applications.
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Figure 1: Regional opportunities to accelerate sustainable production

Source: A.T. Kearney research, Accenture Strategy analysis

Regional opportunities

Fourth Industrial Revolution developments span across 
innovations in areas such as digital technologies, new 
materials, innovative operating models for closed loop 
manufacturing and factory automation. Given the breadth 
of these developments, it is critical to identify which are 
best suited for diffusion and the actions required to help 
innovation spread.

Data from the World Economic Forum Country Readiness 
Index framework and our analysis of case studies 
revealed that each region has its own local context, which 
allows it to adopt specific Fourth Industrial Revolution 
developments. Regional variations in opportunities to 
diffuse sustainable production practices are explored. To 
keep the analysis specific yet representative, the following 
geographies were examined: Europe (Poland), Africa 
(Kenya, Ethiopia), Asia Pacific (India, Thailand, Vietnam) 
and Latin America (Argentina, Mexico).3 Although answers 
cannot be derived for an entire region from one or two 
countries, promising trends can be identified and thus 
help to “connect the dots” of which developments are 
particularly relevant given a region’s characteristics. 

–	 In Europe, Poland is one country with complex 
structures of production, robust trade linkages 
with strong demand and a rapidly rising consumer 
consciousness of production’s effect on the 

environment. Industrial innovations, such as cobots 
and supply chain traceability, are exciting opportunities 
for the region. 

–	 Within African economies, Kenya and Ethiopia, among 
others, reflect a strong focus on workforce agility 
and adaptability, as well as on sustainability. Agri-
tech hotspots such as Kenya are ideally positioned to 
embrace agricultural innovations.

–	 The focus economies in the Asia-Pacific region, such 
as India, Thailand and Vietnam, are characterized by 
scale, strong capital inflows and manufacturing hubs. 
Given their robust trade linkages, these economies are 
well positioned to import innovations in the regionally 
significant automotive and electronics industries. Low-
tech sectors, such as textiles, apparel and agri-food 
production, can also benefit significantly. 

—	 Latin American economies, such as Mexico and 
Argentina, have strong consumer demand and a 
robust physical and technological infrastructure. With 
significant meat-processing sectors, these countries 
are well positioned to embrace innovations in the food 
and beverage industry.  

Figure 1 summarizes the potential leverage points and 
actions for each region. Additionally, Chapter Two provides 
case studies, as well as potential actions and implications, 
for business leaders and policy-makers. 

Regional Opportunities: Each region has a unique local context and lends itself better to the adoption of 
specific Fourth Industrial Revolution developments 

Summary of the potential leverage points and actions for each region based on case study and country analysis*  

*To keep the analysis specific yet representative, the following geographies have been studied closely:  Europe (Poland), Asia Pacific (India, Vietnam, Thailand), Africa (Kenya, Ethiopia), and Latin America 
(Argentina, Mexico) 

North & Latin America 

•  Leverage - Strong environmental focus, 
strong local market, favorable energy 
and input costs 

•  Actions – Introduce required 
certifications and standards, execute 
consumer awareness campaigns 

Europe 

•  Leverage – Strong structure of 
production, strong sustainability focus, 
robust demand 

•  Actions – Cross stakeholder 
partnerships, boost R&D / innovation 

Asia Pacific 

•  Leverage – Scale, investments, trade 
linkages, strong industry for automotive 
and electronics 

•  Actions – Drive adoption of digital / ICT, 
Undertake labour upskilling initiatives 

East Africa 

•  Leverage – Strong environmental focus, 
strong impetus on skills and inclusivity 

•  Actions – Build upstream integration, 
introduce certifications and standards, 
introduce incentivization mechanisms  

The Accelerating Sustainable Production 
framework

Talking about sustainable production is one thing; 
measuring progress towards achieving it is another. 
This is the driving force behind this work because major 
milestones are looming: in 2018, progress towards SDG 
12 on sustainable consumption and production will be 
reviewed by the United Nations High-Level Political Forum 
on Sustainable Development. 

To ensure business and government are on track, we 
have created the first online framework for evaluating the 
business and sustainability potential of Fourth Industrial 
Revolution developments. The framework has two 
purposes: (1) to measure the total value created from 
implementing a given development in the production 
system, and (2) to identify sources of impact on the SDGs 
and the underlying targets and metrics. As a result, the 
link at a strategic level between industry value creation and 
the SDGs can be visualized, and the benefits of Fourth 
Industrial Revolution innovation in the production systems 
optimized. 
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Context 

The Accelerating Sustainable Production project seeks 
to inspire the creation of production systems that drive 
increased productivity and efficiency, while simultaneously 
benefitting society and the environment. 

As part of the World Economic Forum System Initiative 
on Shaping the Future of Production, the project provides 
a platform for leaders across sectors and industries to 
ensure the future of production is based on inclusive and 
sustainable economic growth. This growth is enabled 
by technology innovation and dissemination, careful 
consideration of global common assets, and human-
centred workforce strategies. Introduced in 2016, the 
System Initiative’s global community has grown to over 
50 businesses from 18 industry sectors, 27 ministers of 
industry as well as top engineering universities, labour 
unions and relevant civil society organizations. 
Other projects in this System Initiative are: 

–	 Country Readiness for the Future of Production: 
pinpoints the critical success factors required for 
diffusing and scaling Fourth Industrial Revolution 
technologies

–	 Employment and Skills for the Future of 
Production: examines shifting technological, 
manufacturing industry and macro trends highlighting 
the risks created by skills supply and demand 
mismatches globally

–	 Technology and Innovation for the Future of 
Production: examines digital opportunities in 
downstream manufacturing based on three trends: 
connectivity, intelligence and flexible automation

–	 The Future of Production in ASEAN: analyses the 
trends affecting manufacturing in the Association 
of Southeast Asian Nations and member countries’ 
current competitiveness in manufacturing in this 
context

This White Paper complements the work of these projects 
and is indebted to them, particularly to the Country 
Readiness Index framework, which helped shape the 
review of opportunities to diffuse regional sustainable 
production. 

Objective 

This White Paper provides the foundational insight and 
tools for the second and third years of the Accelerating 

Introduction

Sustainable Production project by exploring high-impact 
technologies, regional opportunities for diffusion and the 
value at stake for cross-sector stakeholders. At its core, 
this work is a strategic framework enabling government 
and business to harness innovation in production for 
sustainable development and competitiveness. How? 
They can do so by understanding the potential of certain 
developments for achieving SDGs in a given region. 
This first White Paper of the project seeks to answer three 
questions: 

–	 What changes will the Fourth Industrial Revolution 
bring to systems of production, and how will they affect 
sustainability?

–	 What geographical opportunities exist to scale and 
diffuse sustainable opportunities?

–	 What value can these Fourth Industrial Revolution 
developments create for business, society and the 
environment, and how can they help achieve the 
SDGs?

The output is a prioritized set of emerging technology 
developments in each of the focus industries, with potential 
sustainability impacts identified on a global level.

Scope

The project developed from community meetings in Berlin, 
Dalian and New York in 2017. Four sectors reflecting our 
stakeholders’ experiences were identified; these are low- 
and high-tech product manufacturing industries with high 
environmental productivity, end-consumer visibility and 
good potential for further transformation. The technology 
group classification is based on OECD (2005) technology 
classification based on R&D intensity relative to value 
added and gross production statistics:4 

–	 Automotive 

–	 Electronics 

–	 Food and beverage 

–	 Textiles, apparel and footwear 

To keep the analysis specific yet representative, the 
following geographies were examined: Europe (Poland), 
Africa (Kenya, Ethiopia), Asia Pacific (India, Thailand, 
Vietnam) and Latin America (Argentina, Mexico). The 
methodology section in this paper’s appendices provides 
details on the research scope, as well as terms and 
definitions.



8 Driving the Sustainability of Production Systems with Fourth Industrial Revolution Innovation

Defining sustainable production

According to the Oslo Symposium of 1994: 

Sustainable production is the manufacturing of 
products and creation of related services, which 
respond to consumer and market needs, and bring a 
better quality of life while minimizing the use of natural 
resources and toxic materials as well as the emissions 
of waste and pollutants so as not to jeopardize the 
needs of further generations.

Structure 

Chapter One of this White Paper reveals a clear 
understanding of the 40 disruptive technology 
developments across four industries that can help 
accelerate sustainable production. 

Chapter Two presents case studies where these 
developments have enabled sustainable production and 
competitiveness, and identifies opportunities to scale and 
diffuse leading practices across geographies.

Chapter Three sets out a quantitative framework to 
evaluate the benefit to business and the effect of Fourth 
Industrial Revolution technology developments on 
sustainability to help prioritize action and influence national, 
municipal and corporate strategies. 

Audience

This paper is aimed at decision-makers in business and 
national and municipal governments who will use it to 
shape and guide the implementation of Fourth Industrial 
Revolution technologies, and thereby work towards 
achieving two goals: economic growth, and social and 
environmental betterment. 

Next steps

This work is intended to spur conversation between 
business, government and civil society; to help explore the 
connection between industrialization and the attainment 
of SDGs; and, ultimately, to enable collaborative, action-
oriented projects to address challenges and optimize 
benefits. 
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Methodology

Chapter One: Fourth Industrial Revolution industry 
developments and the United Nations Sustainable 
Development Goals

Our evaluation framework is based on the SDGs and 
indicators. Developments in Fourth Industrial Revolution 
technology were assessed against relevant SDG targets 
based on desk research and interviews, noting upside 
potential and risks. Fourteen of the 17 SDGs were selected 
and grouped to make up three areas for assessing 
sustainability (economic, social and environmental; see 
Figure 2). The full list of the related targets and indicators 
was narrowed down to those relevant to production 
systems in the in-scope industries.

See Appendix 2 for a full description of Chapter One 
methodology.

Figure 2: Sustainable Development Goals linked to 
production activities grouped by three assessment areas

Source: Accenture Strategy analysis

Chapter Two: Regional opportunities 

The regional assessment of opportunities for accelerating 
sustainable production is based on the World Economic 
Forum data-driven Readiness for the Future of Production 
Assessment, which is made up of two dimensions: the 
structure of production (the current baseline of production) 
and the drivers of production (the key enablers that 
position a country to capitalize on emerging technologies 
to transform its production systems).  

To understand regional opportunities for diffusing 
sustainable production developments, we gathered 
relevant case studies, identified the critical success factors 
and mapped them against the levers in the framework. We 
then identified the changes required to support diffusing 
innovation in sustainable production in the selected 
countries versus the baseline performance of drivers of 
production data.  

See Appendix 2 for a full description of Chapter Two 
methodology.

Chapter Three: The Accelerating Sustainable 
Production framework

Arguably the most important part of the work lies in the 
Accelerating Sustainable Production framework (also 
available as an online visualization tool available to Future 
of Production community members). Its objective is to 
give businesses a way to manage the impact of SDGs 
strategically, building their own competitive strength in 
the bargain. The model itself is agile, and its methodology 
allows it to be tailored for different technological 
interventions. 

The framework builds on the value at stake approach 
developed as part of the World Economic Forum Digital 
Transformation of Industries project, but is extended to 
cover physical and biological technologies and adjusted 
to address the specificity of manufacturing sectors. 
Connections were established between the lowest-level 
value levers in the value at stake framework and SDG 
indicators through a detailed analysis of the indicators 
and their definitions. Our aim was to create causal links 
between value levers and SDG indicators, where changes 
to value levers contribute to the SDGs.

See Appendix 2 for a full description of Chapter Three 
methodology. 
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For 40 years until the turn of the millennium, global 
business was predicated on a pattern: commodity prices 
decreased as growth surged. Society benefitted from 
an increasingly comfortable lifestyle; corporations made 
shareholders wealthy, and everyone became complacent.
 
But with the rise of urban populations and middle-class 
consumption, the pattern reversed, leading to acute 
shortages of many resources while putting others, like 
water and fertile soil, under greater stress. And while 
business became efficient at extracting resources, it fell 
behind at preserving them.

We now know (or most of the world acknowledges) a 
simple truth: the way the world manufactures cannot 
be sustained. The “take-make-dispose” linear economy 
approach results in significant resource inefficiency. 

Consider this: Global manufacturing consumes about 
54% of the world’s energy5 and a fifth of its greenhouse 
gas (GHG) emissions.6 Industrial waste makes up to half of 
the world’s total waste generated each year.7 Production 
activities are gobbling up primary resources; metal ore 
extraction, for example, rose by 133% over the last three 
decades.8 At the same time, resource extraction from non-
renewable stocks grew, while extraction from renewable 
stocks declined.9

Innovating production for green growth can go a 
long way towards mitigating negative environmental 
consequences and decoupling the creation of gross 
domestic product (GDP) and use of natural resources. 
The OECD Environmental Outlook to 2050 suggests that 
technological progress can indeed improve the intensity 
of economies in the coming decades.10 And although 
no single development will be a silver-bullet solution, we 
can safeguard the global commons and boost industrial 
competitiveness in the bargain by developing a range of 
approaches. In this section, we identify the developments 
of the Fourth Industrial Revolution with the most potential 
for accelerating sustainable production in the automotive, 
electronics, food and beverage, and textiles, apparel and 
footwear industries.

Chapter One: Fourth Industrial Revolution 
industry developments and the United 
Nations Sustainable Development Goals

Automotive
Context

The automotive industry has experienced strong sales 
and growth in recent years,11 but has been disrupted 
by global macrotrends. These include the evolution of 
ownership models, the shift of demand and supply to 
emerging markets, changing supply chain dynamics and 
the advancement of electric and autonomous vehicles. 
Innovation-related challenges are shifting the distribution of 
earnings and the boundaries between original equipment 
manufacturers (OEMs) and Tier-One and Tier-Two 
suppliers, as well as between technology and automobile 
companies. A recent example is Tesla’s decision to build 
the seats for its Model 3 itself rather than use a supplier,12 
seemingly bucking the trend of the last 30 years towards 
contract manufacturing.13 

Health, safety and emissions regulations are tightening 
across both developed and developing markets. And, 
while sustainability is most often linked with the use of the 
end product, issues such as sustainable sourcing and 
the circular economy are of increasing importance for 
the automotive industry.14 As electric vehicles change the 
industry’s focus from tailpipe emissions to manufacturing, 
battery life cycles and end-of-life impact, technological 
advances upstream present opportunities for enhanced 
resource efficiency, productivity gains and reduced 
material footprint. Asset light manufacturing, enabled by 
predictive maintenance, dynamic adjustment of flows and 
automation, equates to higher machine utilization, reduced 
capital investment requirements and reduced carbon. 

While global in reach, the automotive industry is 
surprisingly regional in nature. According to the 
Organisation for Economic Co-operation and Development 
(OECD), “European Union countries source the majority of 
their intermediates from other European countries, while 
NAFTA partners largely source from within NAFTA. Also, 
in Asia, a clear regional integration has developed through 
the sourcing of intermediates largely from within the 
region”.15 This regional structure makes sense considering 
the cost of logistics and lower value-to-weight ratios of 
component parts. Further localization seems likely, with 
Fourth Industrial Revolution technologies enabling smaller, 
more flexible microfactories close to centres of demand, 
reducing supply chain flows.
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Fourth Industrial Revolution developments

Automotive production processes are a clear example 
of how innovation can drive increased efficiency, 
competitiveness and sustainability. Our research identified 
nine ways in which the Fourth Industrial Revolution will 
change systems of production through innovation in digital, 
physical and biological technologies (Figure 3).

Figure 3: Sustainability assessment of Fourth Industrial Revolution developments in the automotive industry

Figure 4: Top three automotive industry developments with greatest upside potential and descriptions

Source: Accenture Strategy analysis

Source: Accenture Strategy analysis

In the following section, we consider the top-three 
developments presenting the most significant upside 
potential for SDG value creation in the industry (Figure 4), 
as well as the business and sustainability opportunities 
and challenges they present. These are short loop 
recycling, bio-based plastics and composites, and robotic 
disassembly for remanufacturing.

Fourth industrial revolution production system developments: developments with highest potential for SDG 
impact  

Note: The identified developments refer to a combination of technologies, process changes and / or business model changes, which can drive a transformative impact. Also, we have taken a geographically neutral approach to assess the 
impact of these developments 
Images credit: The Noun Project 2017 

Development Brief overview 

Short loop 
recycling for 
manufacturing 

Short loops, in which all recycling processes remain in the automotive sector, are set up to recover and recycle materials for (re)manufacturing 
leveraging multiple partnerships enabled by digital platforms and geo proximity. Current examples of such short loops are set up to recycle raw 
materials such as steel, copper, textiles, and plastics, keeping them as much as possible in the local automotive industry. 

Bio-based 
plastics and 
composites 

Replacing heavier metal and plastic components with engineering-grade biopolymers and/ or lighter natural-fibre-reinforced plastics created 
partially or wholly by using plant feedstock. For example, structures can use flax fibres and bio-epoxy resin intermingled with carbon fibres in 
hybrid composites, which are lighter, cheaper and more environmentally sustainable than  conventional polymers. These materials and parts 
are suitable for multiple vehicle systems, including powertrain applications.   

Robotic 
disassembly for 
re- 
manufacturing 

Robots are widely used in automotive manufacturing but not in remanufacturing, particularly at the critical stage of disassembly. Advances in 
this sphere could mean that end-of-life product disassembly for remanufacture will become easier, faster and more cost-effective, driving 
efficient resource use and enabling the circular economy in the industry.  

AUTOMOTIVE 

Short loop recycling for remanufacturing represents the 
greatest potential for accelerating sustainable production 
in the near term. In a short loop, recovery and recycling 
processes remain in the automotive sector, and materials 
are recovered for (re)manufacturing, thus leveraging 
partnerships with geographically close supply chain 
partners. To apply this effectively, a combination of physical 

and digital technologies is required (particularly digital 
track-and-trace for monitoring and managing material 
and component flows), supported by advanced material 
sorting and efficient robotic, cobotic or worker-assisted 
disassembly systems. 
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developed a 70% biomass auto body coating.22 These 
rapid developments are underpinned by advances in green 
chemistry and chemical engineering, where smart lab 
technologies in the research and development (R&D) phase 
can accelerate the development, manufacturing and testing 
of new composites. 

“The transition to a more efficient and circular use of 
raw materials in the automotive sector is far more than 
an environmental issue; it’s the only way to meet the 
ever-increasing demand for mobility in the context of 
finite natural resources. Circular economy innovation 
has been continuously contributing to Renault’s 
industrial competitiveness and increasing net profits 
for the past five years.” 

Jean-Philippe Hermine, Vice-President, Strategic Environmental 
Planning, Renault-Nissan Alliance, France

“In traditional manufacturing, production quantities 
are known: inventory, input and output are all fixed. 
In remanufacturing, however, there is a lot more 
uncertainty in both the demand and supply sides of 
the production system. The problem is even more 
challenging with electric vehicle components such as 
batteries, where an inventory of cells needs to be kept 
to guarantee delivery, but where cells degrade if not 
used.” 

Jun Ni, Professor of Manufacturing Science, University of Michigan, USA

End-of-life vehicle recovery is commonly a distributed 
activity, relying on small specialized players. On the 
upside, optimizing local activities can result in reduced 
localized environmental risks and increased total material 
productivity for organizations. The downside is that 
recycling of complex composites, additional inventory 
tracking and management, and running disassembly 
systems may require significant investment in fixed assets, 
as well as increased total plant energy consumption.

Robotic disassembly for remanufacturing, where 
automation is leveraged in the critical stage of disassembly, 
is poised to become more prevalent in the longer term. 
Advances mean end-of-life product disassembly for 
remanufacture will become easier, faster and more cost-
effective, driving efficient use of resources and enabling the 
industry’s circular economy. 

Bio-based plastics and composites are based on 
renewable resources and have good upside potential in 
contributing to reducing GHGs and closing material loops. 
These biomaterials, such as flax fibres and bio-epoxy resin 
intermingled with carbon fibres in hybrid composites, can 
be used to produce vehicle components that are lighter, 
cheaper and more environmentally sustainable than those 
made from conventional polymers. Natural fibres use less 
energy in production (11.4 megajoules per kilogram [MJ/kg] 
of product) compared to glass fibres (48.3 MJ/kg); can offer 
a 5-15% reduction in weight, contributing to reduced CO2 
emissions;18 and are suitable for multiple vehicle systems, 
including powertrain applications. 

The production of bio-based polymers is expected to 
triple, from 5.1 million tonnes in 2013 to 17 million tonnes in 
2020.19 Examples of innovation in this space are growing. 
BioMat, developed in a partnership between Faurecia and 
Mitsubishi Chemical, is a 100% bio-based material used to 
replace petroleum-based plastics in automobile interiors.20 
Flaxpreg, developed in collaboration with Peugeot-Citröen, 
is a lightweight composite using unidirectional, non-
woven flax as structural flooring in a vehicle’s passenger 
compartment.21 In addition, Audi, BASF and Covestro have 

Vattenfall, a Swedish power company, is exploring the 
possibilities of a more resource-efficient variety of carbon 
fibre. In Europe, CO2 emission standards for cars are 
pushing manufacturers to switch materials to reduce 
weight while maintaining safety. Vattenfall has explored 
alternative routes for carbon fibre manufacturing based on 
renewable electricity. Making a new car creates as much 
carbon pollution as driving it,23 and the embodied energy 
of virgin carbon fibre is comparatively high at approximately 
200 MJ/kg.24 The most promising path is basing propylene 
production on methanol instead of petroleum. Methanol, 
in turn, can be produced using hydrogen from renewable 
electricity combined with CO2. In this way, CO2 can be 
used to create a valuable substance instead of being 
released into the atmosphere.

Use of bio-based polymers and composites is not 
without its challenges, however. Foremost is the risk 
that growing plant material for automobile applications 
competes with cultivating human food crops, which could 
exacerbate hunger, water scarcity and poverty, particularly 
in developing nations. Before increasing the use of bio-
based polymers, stakeholders should consider wider 
implications. In addition, substituting petroleum-based 
plastics for bio-plastics does not guarantee a GHG benefit. 
Decomposition of biomaterials, and agricultural waste 
generated while growing plants for automotive applications, 
release methane. A switch to bio-polymers must be 
accompanied with a recovery and reuse plan to maximize 
the environmental benefit.

Additional highlight: 3D printing builds products “from 
the bottom up” and therefore reduces waste, which can 
run up to 30 pounds of raw material per pound produced 
by traditional means. It also carries a cost advantage, 
especially when precious materials like titanium and 
nickel-alloy steels are involved in production. Additive 
manufacturing (processes that make three-dimensional 
products from a digital design) can reduce material costs 
by up to 90% and energy costs by up to 50%.25 By 2025, 
3D printing could potentially reduce manufacturing costs 
by about $593 billion.26

One leading example is ICARRE 95, a growth-generating 
project for Renault. The project demonstrated that 95% 
of material from end-of-life vehicles could be recovered 
and 85% recycled under profitable conditions for all 
stakeholders.16,17 Its innovations include specialized 
dismantling tooling, vehicle and part traceability, and 
optimized logistics and worker assistive systems for 
component identification and disassembly.
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Most applications in the automotive industry focus on 
tooling, rapid manufacturing, prototyping and manufacturing 
of spare parts. For example, Audi prints spare parts for 
its vehicles on demand, and Honda uses 3D printing 
for bespoke products to meet customer demands.27 By 
extending this to replacing failed parts on critical production 
line machinery, 3D printing replacements can also help 
reduce downtime.

The use of 3D printing to manufacture new vehicles is 
emerging with companies such as LocalMotors,28 which 
can develop a tailor-made car in under six months. It uses 
an asset-light business model, and connects and digitizes 
design, engineering and manufacturing to reduce the 
time to market, engineering cost, and asset and resource 
consumption.

Increased industrial uptake is expected to generate $1.1 
billion in the automobile industry by 201929 and $2.3 
billion by 2021.30 But the technology is not without pitfalls: 
metal 3D printing has a low processing throughput, and 
repeated recycling can degrade high-purity materials and 
metal powders. While the recyclability issue is even more 
pronounced with plastics, some alternatives exist, such as 
polylactic acid recycling.

Opportunities to accelerate sustainable 
production

As technological and business innovation converge, the 
opportunity for greater focus and deeper integration of 
remanufacturing in the automotive industry remains strong. 
Scale-up will require coordinated investment in reverse 
logistics infrastructure and process innovation, and closer 
partnerships between vehicle OEMs and suppliers. In 
this new value equation, OEMs will need to co-invest with 
suppliers to make collaborative changes that drive value 
for both parties, and to create platforms for innovation and 
process change. The industry’s regional nature can be 
leveraged to back local policy-supported remanufacturing 
scale-up initiatives and help encourage clean economic 
growth. 

As bio-based plastics get closer to meeting or exceeding 
performance and cost requirements, sustainability benefits 
must be maximized and the momentum used to scale, 
bearing in mind challenges in food security and land use. 
Scale-up of biomaterials will require R&D into new materials, 
and investment into biomaterial supply chains and end-
of-life planning. Within the industry and across industries, 
alliances could support and scale the sourcing and disposal 
of bio-based parts and components. By supporting Fourth 
Industrial Revolution developments across industries, 
governments can facilitate the benefits cascading into the 
agri-food industry.

Additive manufacturing should be considered in the 
context of material flows in the industry production system. 
Tailored additive-manufacturing cybersecurity solutions 
can be created to limit the risk of intellectual property (IP) 
infringement. Moreover, regulatory guidelines regarding end-
of-life protocol must be implemented to help maximize the 
benefits of industrial additive manufacturing while minimizing 
the risks.

Electronics
Context

The electronics industry is characterized by complex global 
value chains driven by high-value products. The value chain 
consists of diverse firms across different countries that can 
be broadly categorized into two types: lead firms that carry 
brands, and contract manufacturers that assemble products 
for those firms. Most lead firms are in developed countries, 
with Japan as a major player, while their manufacturing 
counterparts are in emerging markets, with East Asia and 
China as major hubs. Underscoring Asia’s role, an estimated 
90% of all electronics R&D takes place on the continent.

The industry faces significant environmental challenges 
related to energy and material intensity and use of chemicals. 
In fact, 70-80% of the GHG emissions of personal electronic 
devices occurs during the manufacturing phase.31 With 
the number of devices (and device complexity) rising, the 
industry will continue to contribute to GHG emissions. 
Recent studies have revealed challenges regarding lack 
of transparency, sourcing and tracking of metals (and, 
consequently, more counterfeit products), and limited use of 
secondary materials.

Fourth Industrial Revolution developments

Our research identified eight Fourth Industrial Revolution 
developments (Figure 5) that could significantly affect the 
electronics industry’s manufacturing systems, while driving a 
sizeable impact on sustainability. 

In the following section, we examine the top-three 
developments with significant upside potential for the 
industry (Figure 6) – namely, semiconductor fab 4.0, 
autonomous disassembly and green electronic materials – 
along with underlying opportunities and challenges. 

Semiconductor fab 4.0 demonstrates high potential 
for immediate impact and carries the least amount of 
uncertainty. It refers to applying advanced manufacturing 
techniques for electronic components while saving 
significantly on energy and resources. For integrated 
circuit manufacturing, which accounts for roughly 50% of 
the energy consumed over the life of an average device,32 
driving down energy consumption with production-line 
data analytics, and efficiently managing resources by 
using augmented reality to monitor component inventory 
levels, can generate significant environmental benefits while 
enhancing cost-competitiveness for manufacturers. 

Autonomous disassembly could reduce the demand for 
virgin material and enable closed material loops. Apple’s 
Liam project, which facilitates the autonomous disassembly 
of iPhones, helps the company reduce hazardous e-waste 
while recovering precious metals, such as gold, platinum, 
silver and rare metals.33 The project also enhances the 
organization’s competitiveness by using resources efficiently. 
Robots can disassemble an iPhone in about 11 seconds, 
creating adequate capacity to disassemble roughly 2.4 
million phones each year.34
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Figure 5: Sustainability assessment of Fourth Industrial Revolution developments in the electronics industry

Source: Accenture Strategy analysis

Figure 6: Top-three electronics industry developments with greatest upside potential and descriptions

Source: Accenture Strategy analysis

Green electronic materials can potentially drive 
environmental benefits through a shift towards the use 
of organic sources and a reduced dependence on non-
renewable or potentially toxic materials. The development 
could also promote economic growth by generating 
additional income opportunities for farmers. For example, 
the bacteria Geobacter produces bio-wire and can be 
grown on cheap organic feedstock.35 Thanks to this 
development, farmers can now sell crop residue as 
feedstock for growing bacteria. 

Additional highlights: Advanced green packaging is 
good for the planet and profits, and is used by companies 
such as Dell and HP.36 Green materials made from wheat 
straw are broken down by specialty enzymes through 

an organic process. Research indicates that packaging 
sourced this way can lead to a 40% saving in energy and a 
90% reduction in water required for production.37 

Near-dark factories (facilities with few or no humans) are 
gaining in uptake but need to be considered carefully. On 
the upside, these factories can reduce product defects 
in some cases by up to 80% and boost productivity by a 
huge 250%.38 This development’s potential downside is 
in increasing income inequality from reshoring production 
close to market or in downsizing the workforce in 
developing areas. Cambridge Industries Group, a leading 
China-based telecom manufacturer that is converting its 
production units into near-dark factories, is laying off two-
thirds of its 3,000-strong workforce.39

Fourth industrial revolution production system developments: developments with highest potential for SDG 
impact  

Intervention Brief overview 

Semiconductor 
Fab 4.0 

Refers to the application of advanced manufacturing techniques to the production of electronic components such as silicon wafer fabrication, 
semiconductors and microchips, which is very energy and resource intensive. Optimising operations can help improve sustainability significantly 
with a focus on the adoption of IIoT, big data, advanced analytics, machine learning and cobotics in both front and back-end fabs, especially in 
emerging markets where there is a considerable opportunity for energy and resource efficiency gains. 

Autonomous 
disassembly for 
electronics 

Refers to the disassembly of electronic products for component reuse and recycling, reducing the demand for virgin material and enabling 
closed material loops and Circular Economy business models. This development is enabled by modular design technology and advanced 
robotics and automation within mini disassembly factories. It decreases supply chain risk, mitigates reputation risk in the case of electronics and 
conflict minerals, and ensures the continuous reuse and valorisation of raw materials.  

Green 
Electronic 
Materials 

Synthetic biological materials from organic sources like bacteria and microbes can help meet the increasing demand for making smaller and 
more powerful devices. Currently functioning as wires, transistors and capacitators, these materials can decrease the dependence on non-
renewable resources and the use of toxic components in electronics in a cost-efficient way. Proposed applications include biocompatible 
sensors, computing devices and as components of solar panels.  

ELECTRONICS 

Note: The identified developments refer to a combination of technologies, process changes and / or business model changes, which can drive a transformative impact. Also, we have taken a geographically neutral approach to assess the 
impact of these developments 
Images credit: The Noun Project 2017 
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The sustainability challenges for food and agriculture in the 
short and medium term are particularly acute. Agriculture 
accounts for 80-90% of freshwater consumption43 and 24% 
of global GHG emissions.44 A quarter of all food, measured 
by calorie content, is wasted from “farm to fork”, and 8% 
of the loss occurs in the upstream value chain.45 Agri-food 
systems contribute significantly to soil erosion and pollution 
because of fertilizers, pesticides, deforestation and over-
irrigation. The International Food Policy Research Institute 
indicates that 5 to 10 million hectares of cropland are lost 
annually to severe degradation, and that declining yields 
can be expected over a much larger area.46 

Feeding the world in 2050 will require a 70% increase in 
overall food production because of population growth and 
changes in consumption driven by an expanding middle 
class,47 with demand for red meat and dairy products 
increasing by up to 80%.48 Every opportunity presented by 
the Fourth Industrial Revolution must be used to realize a 
global food production system that can address challenges 
with limited environmental impact while harnessing growth, 
innovation and development opportunities. The Business 
and Sustainable Development Commission estimates that 
opportunities to create value for the SDGs in agri-food 
value chains could potentially reach $2.3 trillion annually by 
2030.49

Fourth Industrial Revolution developments

This analysis focuses predominantly on upstream value 
chain segments due to the low-tech nature of food and 
beverage processing and production, and the substantial 
potential for improving efficiency in agri-food activities. 
Our research identified 11 ways in which Fourth Industrial 
Revolution developments will change production systems in 
the food and beverage industry through innovation in digital, 
physical and biological technologies (Figure 7). 

In the following section, we consider the top-three 
developments with the most significant upside potential 
for SDG value creation in the industry (Figure 8) – namely, 
precision agriculture, advanced bio-farming and genome 
editing for food crops – as well as the business and 
sustainability opportunities and challenges they present. An 
example of how precision agriculture works is by deploying 
moisture sensors and analysing data at an automated 
irrigation system.

Precision agriculture works by deploying moisture sensors 
and analysing data at an automated irrigation system. Water 
consumption was reduced on one Californian almond 
plantation by 20%.50 Analysis to date has indicated that 
growing a single almond consumes as much as 3.8 litres of 
water, making for considerable environmental gains.51 

IBM research suggests that 90% of all crop losses are due 
to weather.52 Predictive modelling and precision agriculture 
techniques could reduce weather-related crop damage 
by 25%.53 This has significant consequences, especially 
for national and regional economies that rely on agri-food 
production. As a testament to the importance of precision 
agriculture, agricultural tech investment jumped to a record 
$25 billion in 2016.54

Opportunities to accelerate sustainable 
production

Given the nature of the electronics industry, where innovation 
is critical for competitive differentiation, companies in the 
sector should harness these innovations to accelerate their 
positive effects. Strategic partnerships with academia and 
research institutions could help achieve this. 

Developments such as autonomous disassembly will require 
simultaneous business model innovation, both up and down 
supply chains. Along with developing take-back incentives 
and infrastructure with customers, manufacturers will need 
to map critical downstream value chain partnerships, invest 
in transformation of their supplier networks, and leverage 
product usage data to drive production system efficiency. 
Smart devices can feed field data back into engineering 
and manufacturing processes to reduce obsolescence, and 
increase the useful life of products. 

Businesses must ensure their infrastructure keeps pace with 
fast-evolving marketplace requirements. Consider those 
for robotic technology (for developments such as near-
dark factories and autonomous disassembly), blockchain 
solutions for digital traceability or digital assets for 3D printed 
electronics: all demand capital investments supported by 
the business sector. Leading organizations are identifying 
avenues for strategic investments to gain a competitive 
edge. Foxconn, the manufacturer of Apple’s iPhone, piloted 
a blockchain project, disbursing working capital loans worth 
$6.5 million to its manufacturing supply chain partners.40 

From a policy perspective, framing incentivization 
mechanisms is an opportunity to seamlessly channel funds 
needed for capital investments. Governments could consider 
the implications of fully automated production facilities for 
local economies, and could mitigate risks by ensuring they 
have a viable industrial strategy in place.
 

Food and beverage
Context

The food and beverage industry is characterized by a 
relatively small number of multinational companies linking 
small producers from around the world with consumers.41 

Developing and emerging economies are key players, often 
heightening the importance of sustainability issues. 
The industry is low-tech (according to the OECD’s 
technology classification based on R&D intensity relative to 
value added) and can absorb innovation without significant 
societal downsides. In fact, analysis by the United 
Nations Industrial Development Organization (UNIDO) 
shows that the industry can sustain value-added growth 
across various stages of economic development, thanks 
to continuing labour productivity gains at a rate similar 
to per-capita growth of GDP and a very slow decline in 
employment.42 
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Figure 7: Sustainability assessment of Fourth Industrial Revolution developments in the food and beverage industry

Source: Accenture Strategy analysis

Figure 8: Top-three food and beverage industry developments with greatest upside potential and descriptions

Source: Accenture Strategy analysis

But downsides do exist too. Precision agriculture could 
exacerbate global inequality as less developed economies 
struggle to invest in rural internet infrastructure, affordable 
finance and e-skills programmes for farmers. In addition, 
the large-scale deployment of devices could lead to 
increased and localized electronic waste, especially in 
geographies where waste management infrastructure is 
lacking. 

Advanced bio-farming is the convergence of precision 
ag-tech and biological solutions for agriculture, developed 
through advanced green chemistry and microbiome 
technologies. 

Artificial fertilizers have had tremendous success boosting 
agricultural productivity. Yet, nitrogen and phosphorous 

from agricultural run-off has affected marine ecosystems 
and created man-made “dead zones” in 10% of the world’s 
oceans,55 with a notable example lying in an 8,500 square-
mile swathe of the Gulf of Mexico near the Mississippi River 
Delta.56 

The environmental, social and economic benefits from 
large-scale deployment of bio-based solutions are vast. 
A 21st-century approach to organic farming should 
leverage the soil and crop microbiome for production 
breakthroughs, in combination with precision agricultural 
techniques, to close the conventional organic-yield gap 
(currently at about 19%57) and create biodiversity benefits. 
The opportunity is already attracting start-ups and 
multinationals investing billions of dollars, while creating a 
new frontier for agri-food production.58 

Fourth industrial revolution production system developments: developments with highest potential for SDG 
impact  

Development Brief overview 

Precision 
Agriculture 

Integrates data and analytics with crop science to enable scientific farming decisions. It leverages technologies such as GPS, soil sensors, 
weather data and IoT for decisions related to fertiliser, irrigation, harvesting time, seed spacing etc. It is applicable to the entire agricultural 
production system and drives substantial yield gains whilst optimising for resource use.  

Advanced Bio 
Farming 

The convergence of precision Ag-Tech and the use of biological solutions for agriculture developed via advanced green chemistry (e.g. bio-
stimulants and bio-pesticides). They represent a broad spectrum of products based on naturally occurring micro-organisms for pre- and post- 
harvest application. The solutions reduce chemical pollution to land and water, help address biodiversity decline and mitigate risks to human 
health and wellbeing from conventional agri chemicals.  

Genome 
Editing 

A technique that enables scientists to hack into genomes, make precise incisions, and insert desired traits into plants. In contrast, traditional 
genetic modification alters DNA to include genes from other organisms to produce a desirable trait. Genome editing can promote drought 
tolerance, increase in yields and productivity from agri equipment.  

Note: The identified developments refer to a combination of technologies, process changes and / or business model changes, which can drive a transformative impact. Also, we have taken a geographically neutral approach to assess the 
impact of these developments 
Images credit: The Noun Project 2017 

FOOD & BEV 
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“The key challenge is industry and government 
working together to promote a strong, risk-
based regulatory environment to encourage the 
commercialization of new technologies and investment 
through the entire agriculture value chain – from seeds 
to packaging.”  

Lisa Schroeter, Global Director, Trade and Investment Policy, Dow 
Chemical Company, USA

Genome editing presents an efficient and cost-effective 
opportunity to accelerate traditional selective breeding 
and cultivation practices in farming.59 Changes that took 
decades, even centuries, to make can now be done in 
a few months thanks to new gene editing tools, such as 
CRISPR/Cas 9. Such tools come with fewer of the risks 
associated with past genetic engineering techniques.60 

The technology creates significant business value. For 
one, getting genetically modified crops approved for use 
is a complex and expensive process. Successes to date 
include large commodity crops, such as corn and soya.61 
The technology can democratize and scale bioengineering 
to economically and environmentally critical plants, cut 
costs, increase yields and enable the value created to be 
shared between industry stakeholders. Consider this: every 
year, the porcine reproductive and respiratory syndrome 
virus costs pig farmers in Europe nearly $1.6 billion, and 
$664 million in the United States.62 Genome editing could 
be used in livestock to make animals healthier and more 
productive, helping to reduce economic losses from 
disease.

Regarding environmental sustainability, the technology 
enables research into breeding plants that are more 
drought tolerant, resource efficient, and adaptive and 
resilient to climate change. Further, it can help improve the 
genetics of native livestock in tropical latitudes,63 bettering 
the livelihoods of hundreds of millions of smallholding 
farmers dependent on livestock. Appropriate regulation 
and access to the technology are critically important in 
realizing and sharing this technology’s economic, social and 
environmental value. 

Additional highlight: Cellular and tissue engineering 
are applied to end products, such as meat, eggs and 
milk. Animal-based foods, particularly beef, are resource 
intensive and offer little resource productivity compared with 
other protein sources, such as plants or fish. In fact, while 
animal-based food production accounts for 75% of the land 
used globally for food production, and for two-thirds of the 
GHG emissions associated with agriculture, it delivers only 
27% of total protein consumption.64 Changing cultures and 
diets could take decades in the best of scenarios. Turning 
to technology may be the preferred (or only) choice if 
society is to safely navigate the challenges that future food 
needs will impose on common global assets.

Opportunities to accelerate sustainable 
production

The World Resources Institute points to the task of feeding 
9.8 billion people by 205065 while also advancing rural 
development, reducing GHG emissions and protecting 
valuable ecosystems as the greatest challenge of our era.66 
Thus, critical success factors are shifting for the industry: 
competitiveness is a strategic balancing act between 
creating economic value, considering environmental 
consequences and managing social implications. 
Increasing yields at the farm level and optimizing 
processing incrementally can no longer chart the future 
for food and beverage production. The Fourth Industrial 

Revolution offers opportunities for transforming agri-food 
systems while driving net positive effects on SDGs. 

Realizing the potential value of these developments 
involves additional R&D, considerable capital investments, 
institutional support and the availability of talent, as well 
as physical and digital infrastructure. Few players have the 
resources and capabilities to pursue it alone. However, 
by working together, gene editing labs and manufacturers 
of agri-technology can accelerate the development of 
food varieties better adapted to existing or prototyped 
agricultural robots. Digital farming solution providers can 
work with local funding institutions to secure affordable 
finance for the customers they seek. Tailoring, scaling 
and deploying precision agricultural solutions globally 
go hand in hand with developing funding and upskilling 
programmes. Both represent areas where collaboration 
is critical; shaping the future of organic food production in 
chemical and biotech industry coalitions is another. 

Governments must shape policy that stimulates and 
enables development. To do so, they need to stay abreast 
of technological advances in the industry, and carefully 
evaluate socio-economic implications and the necessary 
enabling environment on a case-by-case basis. The 
digitization of agriculture, for example, will require access to 
finance and skills programmes that could be government 
backed. This is especially important for developing 
countries that risk falling behind, as the Fourth Industrial 
Revolution and concerns about climate change begin to 
shift the geographic dynamics of agri-food systems.
 

Textiles, apparel and footwear
Context

The demise of the Multi-Fibre Agreement in 2005 has 
defined the industry’s competitive landscape. That 
agreement imposed quotas on the amount of yarn, fabric 
and clothing developing countries could export to developed 
ones, thus triggering a shift of production from the latter 
to the former group. Consequently, the industry accounts 
for a high proportion of total manufacturing jobs in many 
countries where economic development is a central issue.67 

The global textiles, apparel and footwear industry has been 
led by market forces and dominated by a small number of 
larger organizations, with apparel brands and lean retailers 
exerting downward pressure on prices. The result is limited 
technological change beyond design, capacity and speed-
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to-market variables, and an industry heavily intertwined with 
sustainability issues. 

In the past, sustainability efforts focused on safe and fair 
working conditions, and eradicating child labour practices. 
In recent years, the growing concern has been the industry’s 
environmental impact, which tends to vary depending on the 
type of fibre used. Challenges focus on resource depletion 
and GHG emissions from processing fossil fuels for 
synthetic fibres, significant water and chemical use related to 
production of fibre crops, and water, toxicity and hazardous 
waste and effluents related to the production stage.68 For 
example, polyester production for textiles in 2015 alone 
released GHGs equivalent to the annual emissions of about 
185 coal-fired power plants.69 Moreover, producing one 
cotton shirt still requires about 2,700 litres of water,70 and 
global textile consumption is expected to triple by 2050 
compared to 2015 levels.71

Nevertheless, global clothing production doubled between 
2000 and 2014.72 The current “fast fashion” means garments 
are made at a rate of 50 cycles per year versus the two 
cycles of traditional fashion.73 Consumers are becoming 
aware of the fashion value chain and expect companies 
to step up regarding sustainable production practices, 
as evidenced by numerous certification schemes. This 
poses a challenge for businesses – namely, how to capture 
exploding demand from discerning and less predictable 
consumers, while preparing for a cleaner and leaner industry 
where technology transformations are shifting upstream. 

Fourth Industrial Revolution developments

This analysis focuses on upstream value chain segments 
due to the low-tech character of the industry, and the 
sustainability implications of fibre origin, production and 
processing. Our research identified 12 ways in which 
the Fourth Industrial Revolution will change systems of 
production in the textiles, apparel and footwear industry, 
with innovation in digital, physical and biological technologies 
(Figure 9). 

In the following section, we consider the top-three 
developments with the most significant upside potential 
for SDG value creation in the industry (Figure 10) – 
namely, alternative natural fibres, gene-edited fibre crops 
and biofabricated leather – as well as the business and 
sustainability opportunities and challenges they present. 
In fact, the greatest potential for accelerating sustainable 
production in the near term is in alternative natural fibres 
and precision agriculture for fibre crops. (This commentary 
will focus on alternative natural fibres, as issues regarding 
precision agriculture were addressed in the food and 
beverage section.)

Alternative natural fibres can be used to produce textiles 
with superior properties from raw inputs that are renewable 
and biodegradable. Based on recent market developments 
(e.g. decreasing paper consumption) and scientific evidence, 
forest-based textile fibres can also be included in this 
group.74 

Thanks to green chemistry and enzyme science, innovators 
have solved the stiffness that plagues bast fibres, such as 
flax, hemp or jute.75 Hemp requires much less water than 
cotton; it also grows quickly, and its roots aerate the soil, 
leaving it rich for future crops. Moreover, hemp yields about 
three times more fibre per acre than cotton.76 While the 
sustainability of forest fibre production depends largely on 
the wood sourcing and chemical treatments used, these 
materials can deliver strong environmental performance.77 
Importantly, these benefits come with few risks related to 
land use and deforestation.

Scaling production would translate into socio-economic 
benefits for farmers in developed and developing countries 
globally, with new opportunities to create value from waste 
streams (e.g. pineapple leaves) or to grow alternatives to 
cotton, which is costlier than oil-based synthetics.78 The latter 
group of materials presents a challenge whose scale and far-
reaching consequences are only beginning to emerge from 
urban waterways and oceans alike. 

“A groundbreaking innovation to close the loop is 
our RefibraTM fibre, which uses pulp from cotton 
scraps as a raw material. The final target is to close 
the loop also on post-consumer waste. Technologies 
have gotten better, chemically and mechanically. The 
challenge lies in identifying the chemical composition 
of waste streams of fibres. Digital technologies can 
help address this along the value chain.” 

Stefan Doboczky, Chief Executive Officer, Lenzing, Austria

Recent tests have shown that billions of people around the 
world drink water contaminated by microplastic, with 83% 
of samples found to be polluted.79 Developments in green 
chemistry would mitigate microplastic pollution driven by 
synthetic clothing.

Gene-edited fibre crops leverage the same technologies 
mentioned in the food and beverage industry section of this 
White Paper. They improve the productivity of fibre crops 
and can be used to manipulate the physical properties of 
yarns and fabrics.

The development of cultivated upland cotton has plateaued 
in its ability to create further value-added products in a 
non-genetically invasive way.80 The complex genome 
feature of allotetraploid81 cotton is challenging, but the 
latest research has proven that CRISPR/Cas9-mediated 
mutation of cotton genes is feasible although the heritability 
of these gene modifications requires further study.82 
Considering that cotton occupies 2.4% of the world’s 
crop land and accounts for 24% and 11% of the global 
sales of insecticides and pesticides, respectively,83 further 
improvements in cultivated cotton can have a significant 
effect on sustainability. 

This development opens the door to applying genome 
editing to cotton, and possibly to other natural fibre 
plants. Genetic modifications to cotton have resulted in 
the reduction of insecticides and increases in yields, but 
not without unintended consequences, such as a loss 
of biodiversity and a monopoly in seed supply.84 Open 
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source platforms with commercial plant genome data and 
editing technologies can help democratize the access to 
improved, more resource-efficient textile fibres. 

Biofabricated leather is the latest option available in the 
long list of leather substitutes and alternatives. However, 
current alternatives to animal leather are mostly inorganic, 
non-biodegradable, less durable and heavy contributors to 
environmental pollution.85 An estimated 430 million cows 
will need to be slaughtered annually to satisfy global fashion 
demands by 2025, making for a potentially significant effect 
from lab-grown materials. (These estimates exclude industrial 
demand, such as in the automotive sector.86) Skin is the most 
economically important byproduct of the meat industry.87 
Leather’s environmental impact is related to that of industrial 
farming and leather processing, the latter being highly toxic. 

For example, levels of tanning-related toxins in the Ganges 
River near Kapur, India are about 6.2 milligrams per litre 
versus a government-mandated limit of 0.05 milligrams per 
litre.88

Along with addressing ethical and environmental issues 
related to leather production, lab-grown or biofabricated 
leather can be lighter, thinner and stronger.89 Businesses 
can capture demand from ethically conscious shoppers 
and develop new products that mimic the properties of 
even rare or extinct animals. In fact, lab-grown leather can 
offset the decreasing supply of traditional leather.90

However, although the industry is expected to continue 
growing in many developing and newly industrialized 
countries,91 the negative effect on existing industry workers 
is a potential risk should this technology scale quickly. (It 

Figure 9: Sustainability assessment of Fourth Industrial Revolution developments in the textiles, apparel and footwear 
industry

Source: Accenture Strategy analysis

Figure 10: Top-three textiles, apparel and footwear industry developments with greatest upside potential and 
descriptions

Source: Accenture Strategy analysis

Fourth industrial revolution production system developments: developments with highest potential for SDG 
impact  

Development Brief overview 

Alternative  
Natural 
Fibres 

Textile fibres made from non-edible plants or parts of plants that are high in cellulose (e.g. pineapple leaves, coconut husks, banana stems). 
The source of fibre is farm residue that is often not of much commercial value. This also includes natural textile fibres that could be used as 
alternatives to cotton and petroleum-based textiles, pure or in textile blends, such as flax, hemp, bamboo and seaweed. These plants can 
provide fibres with superior properties that are renewable and biodegradable. 

Gen-Edited 
Fibre Crops 

Leveraging CRISPR/Cas9 genome editing for fibre crop improvement, especially in relation to cotton. The technology has the potential to 
address issues of decreasing yields due to soil erosion, water intensity and overuse of agri chemicals, whilst presenting a value creation 
opportunity for industry leaders and major exporting countries of cotton, such as China, India and US.  

Biofabricated 
Leather  

The production of leather without the use of animal hides via lab-grown biofabricated tissue from in-house created collagen cells. The collagen 
is purified and finished utilizing a simplified process of tanning that uses fewer chemicals. There is no waste because size and shape are 
determined by design whilst physical properties, such as variable sheet topography, are customisable. The process is faster and cleaner, 
resulting in an ethical product with reduced environmental footprint.  

Note: The identified developments refer to a combination of technologies, process changes and / or business model changes, which can drive a transformative impact. Also, we have taken a geographically neutral approach to assess the 
impact of these developments 
Images credit: The Noun Project 2017 

TEXTILES, APPAREL & FOOTWEAR 
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should be noted that no other industry uses livestock hides 
and skins.) 

Opportunities to accelerate sustainable 
production

While no single alternative natural fibre can either replace 
cotton, or take the considerable market share of oil-based 
synthetics, a combination of these materials at scale, along 
with awareness campaigns targeted at end users, can 
contribute significantly towards decoupling the industry’s 
growth from its ecological footprint. Technology is already 
enabling this, but further research is needed. In addition, 
existing collaborative efforts for scaling can benefit from 
governmental support, similar to how traditional fibre 
crop subsidies are used, such as those for the US cotton 
programme.92 

Gene-edited varieties of fibre plants can be adopted at 
scale to improve yields, drive down maintenance costs and 
increase earnings for farmers. This, in turn, will positively 
affect a country’s economic growth and GDP, while 
mitigating the industry’s supply-side and reputational risks.
Biofabricating leather is a nascent development on a 
longer-term commercial horizon. While it has socio-
economic downsides, biofabrication is a real opportunity 
for meeting burgeoning global demand without increasing 
the number of livestock. The ability of start-ups to 
deliver volumes and uptake by major apparel brands 
is fundamental. Special collaboration platforms that 
safeguard IP rights can be created to advance this idea. 
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The Fourth Industrial Revolution will likely deploy very 
differently across regions, varying in speed and scale 
between those with legacy assets and those starting from 
scratch. The classic economic development trajectory 
– from agrarian to industrial to post-industrial society 
– is becoming obsolete. Industry will go directly to the 
most sustainable and competitive model by combining 
technology, asset-light processes and new business 
models. 

This chapter explores opportunities for accelerating 
sustainable production practices based on understanding 
the regional context (drawn from the World Economic 
Forum Readiness for the Future of Production assessment 

The framework leverages a data-driven approach to map 
countries across four broad archetypes (Figure 12) – (1) 
global leaders: strong current base and positioned well for 
the future, (2) legacy champions: strong current base but 
at risk for the future, (3) high potential: limited current base 
but positioned well for the future, and (4) followers: limited 
current base and at risk for the future. 

Chapter Two: Regional opportunities

2017-2018) and identifying critical success factors for 
adopting sustainable production developments drawn from 
case study analysis. 

The forward-looking country readiness assessment uses 
a framework (Figure 11) based on two dimensions: the 
structure of production (the baseline of current production) 
and the drivers of production (the key enablers that 
position a country to capitalize on emerging technologies 
to transform its production systems). 

Figure 11: Country Readiness Index framework to assess the future potential of production

Source: A.T. Kearney/World Economic Forum analysis

To keep the analysis specific yet representative, the 
following geographies were studied closely – Europe 
(Poland), Africa (Kenya, Ethiopia), Asia Pacific (India, 
Thailand, Vietnam) and Latin America (Argentina, Mexico).
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Figure 12: Relative positioning for the future of production (eight countries analysed)

Source: A.T. Kearney/World Economic Forum analysis

Europe (Poland)
Regional context

From the framework, the local context in Poland (Figure 13) 
positions the country strongly on the following categories: 

–	 Strong trade infrastructure (robust trade linkages 
and access to markets)

–	 Robust physical infrastructure

–	 Complex structure of production (high maturity in 
collaboration across the value chain as well as across 
industries)

–	 Strong focus on sustainability 

Poland has experienced growing consumer consciousness 
regarding sustainability,93 a trend that could increase 
demand for traceability of products, eliminate counterfeit 
products and provide fair information for consumers. 

Automated cobots in Germany: collaborative 
automated production 

The YuMi cobot, a collaborative dual-armed robot, is 
human-sized and weighs 38 kilograms. Precise and fast, 
it returns to the same point in space over and over again 
to an accuracy of 0.02 mm, and moves at a maximum 
velocity of 1,500 mm per second. Priced at $40,000, the 
YuMi has a payload capacity of 0.5 kilograms per arm and 
can be easily integrated with a workstation. 

1 

India Mexico 
Thailand 

Kenya 

Argentina 

Poland 

Ethiopia 

Vietnam 

Figure 12: Global map of readiness 
assessment results (eight focus 
countries indicated)  

Diffusion opportunities

Given the complex structure of production and strong 
focus on sustainability, Poland appears to be receptive to 
innovations related to industrial production. For example, 
the YuMi cobot, developed by ABB, allows for designing 
and testing through ongoing operations, provides better 
quality, increases productivity and reduces shop-floor 
commissioning time by up to 25%.94 Kurtz Ersa, a 
Germany-based manufacturer of electronic production 
equipment, was the first organization to select YuMi cobots 
to perform repetitive soldering tasks for small and medium 
production volumes.95 
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Figure 13: Country Readiness Index framework score - 
Poland

Source: A.T. Kearney/World Economic Forum analysis

Adidas’ Speedfactory: Digital and flexible 
manufacturing

Adidas Speedfactory uses automation, additive 
manufacturing technology and smart digital twins to 
manufacture shoes. The Speedfactory idea is to flexibly 
produce product parts directly from raw material instead 
of ordering components, shortening its value chain. 
Speedfactory will allow Adidas to shorten its development 
and manufacturing time to market from months to days 
and reduces batches to as little as 500 pairs, or ultimately 
even individually tailored products. Adidas uses this 
capability to create localised designs. Speedfactory 
technology is also being utilized in the traditional supply 
chain to increase flexibility and speed.

and active collaboration across different partners. 
The YuMi cobot was created after extensive R&D and 
innovation through ecosystem collaboration between YuMi 
and its end users.

Implications and actions

Opportunities to accelerate Fourth Industrial Revolution 
developments in Poland are centred on boosting R&D and 
fostering industrial collaboration. Businesses could consider 
partnerships with academic institutions and R&D centres to 
develop state-of-the-art technologies. Over 700 companies 
are currently working with faculty and students at the 
Massachusetts Institute of Technology on collaborative 
industry-specific problem-solving. The companies include 
BAE, BP, Boeing, Du Pont, Eni, Ford Motor, Google, Intel, 
Lockheed Martin, Novartis, Quanta Computer, Raytheon, 
Samsung, Sanofi, Shell, Siemens and Total.99

Policy opportunities include fostering cross-border alliances 
and partnerships through incentivization mechanisms, such 
as the European Commission’s Circular Economy Package 
helping European businesses and consumers transition to a 
stronger and more circular economy.100 Policy mechanisms 
like these could allow Poland to leverage the R&D maturity 
of neighbouring countries, such as France and Germany. 
(In the Readiness for the Future of Production Assessment 
2018 edition scale of 10, France and Germany are rated at 
about 6-7 on parameters such as research intensity and 
ability to innovate.)

Africa (Kenya, Ethiopia) 
Regional context

The average country readiness scores for Kenya and 
Ethiopia (Figure 14) reveal strong positioning in the region 
on: 

–	 Sustainability (high focus on efficient usage of 
natural resources and active measures to minimize the 
negative effects of production on the environment) 

–	 Technology platform (advanced, secure and 
connected information and communications 
technology [ICT] infrastructure to support production 
technologies)

Additionally, the data provided in the underlying 
subcategories (not depicted in the figure) reveal that the 
two countries are also relatively strongly positioned on 
agility and adaptability of the workforce. In fact, while the 
average scores for Kenya and Ethiopia are less than 4 
across most of the subcategories, their average scores on 
agility and adaptability stand at 5.0 and 4.3, respectively. 
Additionally, agricultural activities play a critical role in 
both countries and for the continent overall. The study 
considered this fact: Kenyan agriculture makes up about 
25% of the country’s GDP and accounts for roughly 75% of 
its workforce.101 
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Framework used in report New framework 

•  Complex structure of production (high 
maturity with respect to collaboration across the 
value chain as well as across industries) 

•  Strong sustainability focus  
•  Robust domestic demand and low barriers 

to trade (high local spend based on GDP and 
net imports).  

From an implementation perspective, accelerating 
developments such as cobots may require a greater focus 
on R&D and an ability to innovate – something Poland could 
improve on, as reflected by its relatively low score on these 
parameters in the framework.

Growing consumer consciousness could underpin 
manufacturing innovations that have the potential to support 
local consumer demand at scale. Adidas’ Speedfactory, a 
footwear factory in Germany, enables adapting shoe design 
to meet customer demand at scale.96 Through Speedfactory, 
Adidas created city-specific sneakers for London, Paris, Los 
Angeles, New York, Tokyo and Shanghai.97

Burgeoning consumer consciousness in Poland could 
position it strongly for innovations that potentially enhance 
consumer trust and transparency. For example, 
Walmart’s blockchain-based traceability system is a 
collaboration with IBM that seeks to trace the provenance 
of its products in its food supply chain. As a result, Walmart 
can track the source of mangoes from Mexico in just 2.2 
seconds;98 before blockchain, the same process took nearly 
a week. Regarding execution, innovations such as cobotic 
production systems, Speedfactory or blockchain-based 
traceability systems may require supply chain innovations 
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Pinatex fibres: manufacturing leather from pineapple 
leaves

Pinatex is the commercial name of a fibre used to make 
leather developed from pineapple leaves. Long fibres 
are extracted from the leaves through a process called 
decortication. The fibres are degummed and processed 
in the Philippines to form a non-woven mesh. This 
intermediate product is shipped to Spain, where it is turned 
into durable leather. Leaves from 16 pineapple plants are 
required to create one square metre of Pinatex, which is 
priced at £18. 

Pineapple agriculture globally generates about 13 million 
tonnes of waste, a significant portion of which can 
be converted into Pinatex. The waste generated from 
decortication can also be used as fertilizer or to generate 
biogas. 

Asia Pacific  
(India, Thailand, Viet Nam)
Regional context

Figure 15 shows that India, Thailand and Viet Nam are 
strongly positioned in the Asia-Pacific region on: 

–	 Demand (access to foreign and local demand, and a 
sophisticated consumer base driving diverse industrial 
activities)

–	 Scale (high manufacturing added value as a 
percentage of GDP)

–	 Physical infrastructure

Along with these characteristics, industries also play a 
role. Electronics exports in Asia contributed to nearly 
one-third106 of all exports. Though China has been a large 
contributor to date, countries such as Viet Nam and India 
are gaining traction.107 In the automotive industry, Asia 
contributes nearly half of global passenger car production, 
with India and Thailand as the fifth- and twelfth-largest 
automotive manufacturers in the world, respectively.108

Given these regional nuances, Kenya and Ethiopia could be 
well positioned to leverage their agile and largely agrarian 
workforces to embrace agricultural innovations, such as 
vertical farming, precision farming and non-food-based 
bio-textiles.

Diffusion opportunities

The diffusion of agricultural innovation can be seen in 
companies such as Clean Air Nurseries South Africa (CAN-
SA). Having implemented vertical farming units across 
South Africa, CAN-SA produce is claimed to have lower 
environmental impact and greater health benefits. 

Manufacturing leather from Pinatex fibre requires 
technology to convert pineapple waste into leather in 
an environmentally friendly way.102 The innovation could 
be particularly beneficial for Ethiopia, where pineapple 
cultivation is increasing.103 

The region could also benefit from advances in precision 
agriculture. Monsanto, for example, acquired the Climate 
Corporation for about $1 billion in 2013.104 The acquisition 
enabled Monsanto to collect extensive data about field and 
weather conditions, allowing the company to leverage this 
information as real-time intelligence to farmers who could 
then lock-in profits in case of drought, heavy rain and other 
adverse weather. The initiative helps farmers via higher 
yields and a lower risk of crop failure, while Monsanto 
benefits from a wealth of data that can be used to develop 
better farming products.

Implications and actions

Businesses can play a unique role in accelerating 
agricultural innovations through upstream integration and 
collaboration. With their scale and agility, they could help 
shape ecosystems made up of farmers, non-governmental 
organizations and academia, and use the combined 
expertise to accelerate development.
Policy-makers could:

–	 Develop new certifications and standards to 
ensure safety requirements and help create awareness 
among consumers. For example, People for the 
Ethical Treatment of Animals (PETA), an American 
animal rights organization, has certified Pinatex as a 
cruelty-free label.105 Similar certifications in local African 
geographies could play a crucial role.

–	 Acceleration mechanisms could provide an 
opportunity to leverage incubation centres, innovation 
hubs and funding mechanisms to encourage 
entrepreneurial initiatives. These initiatives could 
complement the geographies’ strong position 
regarding an agile and adaptable workforce.

Figure 14: Country Readiness Index framework score - 
average for Kenya and Ethiopia

Source: A.T. Kearney/World Economic Forum analysis
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Bio-nanowires: US-based electronics innovation

Geobacter (a type of bacteria) can transfer electrons 
to electrode surfaces. Bio-nanowires made from this 
technology are highly conductive and can be produced 
with low toxicity and low energy costs. Geobacter 
nanowires can conduct a charge similar to carbon 
nanowires, and could potentially be integrated into 
electronic devices and sensors.

Toyota’s foray into bio-polymer components: biomass 
to replace plastic

The company has stated that 20% of all its plastic 
components will be bioplastics fully sourced from bio- or 
organic materials. To realize this ambitious goal, Toyota 
Tsusho, the group’s trading arm, has partnered with US-
based Anellotech, a producer of 100% bio-based plastics. 
Anellotech uses a specialized technology for converting 
non-edible biomass into plastic for producing polymers. A 
testing facility has been commissioned and a commercial-
scale facility for production of bio-polymer components 
may be licensed by 2020.

Figure 15: Country Readiness Index framework score  

Source: A.T. Kearney/World Economic Forum analysis

On a regional basis, local economies in Asia Pacific may be 
more receptive to manufacturing innovations, particularly 
in the automotive and electronics industries. Strong 
trade linkages in these countries could help diffuse best 
practices from developed economies.

Diffusion opportunities

In the automotive industry, Toyota’s foray into bio-polymer 
components109 for its new vehicles could be an interesting 
development for local manufacturers to consider. Through 
this initiative, the company aims to replace a portion of 
traditionally plastic components with bioplastics. 

In Europe, Renault’s short loop recycling programme could 
serve as another inspiration. The company embarked on 
this revolutionary project as part of its circular economy 
strategy. Through a network of industry partners and 
vehicle dismantling centres across France, Renault is 
successfully reusing 95% of end-of-life vehicles110 (85% 
by material recovery and 10% by energy generation). 
Currently, the company’s vehicles manufactured in Europe 
comprise 36% of recycled material by mass.111 

Ford is investing heavily in the United States to transform 
itself into a major player in three areas: electrification, 
autonomy and mobility.112 Its capabilities are underpinned by 
connectivity. Through these investments, the company has 
started to transform its business model from focusing on 
selling products to selling outcomes – namely, mobility over 
vehicles. The OEM will add 13 new vehicles to its product 
portfolio by 2020, offering electrification on more than 40% 
of its vehicle line-up by 2020.113

Electronics is another industry with diffusion opportunities 
for scale-up economies in Asia Pacific. The region already 
accounts for a significant share of global electronics R&D. 
Moreover, it is well positioned to embrace innovations, such 
as bio-nanowires114 being developed by the University of 
Massachusetts (USA). 
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The 3D-printed Organ-on-a-Chip115 represents a 
promising innovation in the United States. Organ-on-
a-Chip technology mimics bodily functions, including 
digestion, breathing and cardio-pulmonary systems. This 
expands the avenues of research for disease testing, 
toxicology and drug screening, and is an alternative to 
animal testing. 3D printing of such devices has facilitated 
automated fabrication, with increased levels of complexity 
at potentially lower costs.

Implications and actions

Cross-border partnerships could accelerate the adoption 
of innovations in the automotive and electronics sectors 
in countries such as Viet Nam, Thailand and India. Local 
automotive and electronics manufacturing companies 
could form partnerships and joint ventures with relevant 
players from more mature geographies. 
Government and policy-makers could explore actions, 
including:

–	 Driving the adoption of digital technologies and 
ICT infrastructure: Governments and policy-makers 
could consider introducing policy mechanisms to drive 
the use of digital technologies and investment in ICT 
infrastructure to enable hyperconnected systems of 
production. India, for example, is already developing 
such mechanisms through programmes like the Digital 
India campaign,116 but many countries lack pervasive 
broadband connectivity to fully realize the potential. 

–	 Upskilling the labour force: Given the region’s 
relatively low score (roughly 4.1) on the Future Labour 
Force category, upskilling the labour force is a 
potential opportunity. The workforce must have a 
basic understanding of innovative technologies, and 
needs to be exposed to them from primary school on 
up. Government can play a critical role by introducing 
upskilling programmes, such as the Pradhan Mantri 
Kaushal Vikas Yojana117 initiative launched by the 
Government of India. It aims to enable young people to 
gain industry-relevant skills, helping them to secure a 
better livelihood.

Figure 16: Country Readiness Index framework score - 
average for Argentina and Mexico

Source: A.T. Kearney/World Economic Forum analysis

Memphis Meats: lab-developed products with less 
impact

Food technology start-up Memphis Meats is developing 
lab-grown meat in the United States. Starter cells taken 
from live animals are made to proliferate in a growth 
medium inside a bioreactor. Initial taste tests for beef, 
chicken and duck have produced positive results. The 
company claims that lab meat production reduces GHG 
emissions, as well as land and water use, by a huge 90%. 
In March 2017, the production cost of one pound of meat 
was $9,000. The company expects affordable consumer 
prices by 2021. 

Latin America (Argentina, 
Mexico)
Regional context

Across North and Latin America, Mexico and Argentina 
are strongly positioned on the following framework 
attributes (Figure 16): 

–	 Demand (access to foreign and local demand, and a 
sophisticated consumer base driving diverse industrial 
activities)

–	 Robust infrastructure and technology platform

The food and beverage industry in the Americas is heavily 
focused on meat products. In fact, Argentina has the 
world’s highest per-capita consumption of meat.118 
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Diffusion opportunities

The region is well positioned for upstream innovations in 
the food and beverage industry. US-based DuPont, for 
example, leveraged CRISPR gene editing tools119 to 
develop a variety of corn with higher starch content and 
reduced water requirements. The technology can also be 
used to target disease reduction in crop growth. DuPont 
expects to commercialize this technology by 2020. 

Some newer innovations are being introduced in the 
Americas that bring sustainable practices to the sector. 
Taste tests of lab-grown meat developed by US-based 
Memphis Meats120 have demonstrated good results across 
products from different animals. Lab-grown meat also 
provides an environmentally and animal friendly alternative 
to the traditional product. Tencel® lyocell fibres, made from 
renewable-resource wood, represent another development 
with potential. Fibres are ecologically sourced and have 
a significantly smaller environmental footprint in the 
production process, thanks to lower demand for water, 
solvents, dyes and bleaches.121 This technology can be 
scaled up to geographies such as Mexico and Argentina, 
both of which have dense growth of eucalyptus trees.

Lenzing’s Tencel® branded lyocell fibres: 
environmentally friendly textiles

The Austrian company Lenzing has developed the Tencel® 
lyocell fibre from wood. The trees require no irrigation, and 
pesticides are sourced from sustainably managed forests 
and plantations. The wood is crushed into chips that are 
dissolved, and a solvent spinning process generates the 
fibre. The pure white fibres do not require bleaching and 
need less dye due to high absorbency. The production 
process recovers over 99% of the solvent inputs for reuse, 
making it a closed loop process. A ton of Tencel® lyocell 
fibre can be manufactured from trees harvested from 0.3 
hectares (0.7 acres) of land year by year; producing the 
same amount of fibre from cotton would require four times 
the land and more than 20 times the water.

Implications and actions

Consumer scepticism and inertia tend to hobble 
innovations in the food and beverage industry. Business 
could thus consider consumer awareness campaigns: 
lab-meat producers could explore campaigns that socialize 
the upside of production and allay fears surrounding 
“artificial” products. 

Policy-makers could consider developing new 
certifications and standards to promote and monitor new 
sustainable fibres. For instance, environmentally friendly 
fibres may face consumer scepticism without Ecocert 
certification.122 Developing similar standards may help instil 
the necessary consumer and industry confidence.
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The precipitous pace of technology development is 
easily noticed, both in industry and everyday life. But 
understanding and quantifying how that change creates 
value and simultaneously contributes to the SDGs (in 
place since 2015) are far more difficult. This represents 
the challenge taken on with the Accelerating Sustainable 
Production framework.

The United Nations High-Level Political Forum on 
Sustainable Development will review progress on Goal 12 
(sustainable consumption and production) in July 2018. 
Production systems, however, can potentially contribute to 
a far wider range of SDGs. The Accelerating Sustainable 
Production framework will help businesses and policy-
makers map out a coherent strategy to boost progress 
against the spectrum of SDGs by understanding the links 
between the innovations of the Fourth Industrial Revolution 
and the SDG targets. 

The first task in constructing the framework was to 
measure the value to industry from implementing a Fourth 
Industrial Revolution development in the production 
system. The team leveraged the value at stake approach, 
developed by the World Economic Forum Digital 
Transformation of Industries project, with the scope 
extended to cover physical and biological technologies 
in addition to digital. Six industry value levers were 
considered in this part of the framework: the potential 
effect on an industry’s operating profits (value addition); the 
profits that shift between industry players (value migration); 
the customer benefits, and the effects on labour, society 
and the environment. 

In addition, an understanding was required of the 
connections between these industry value levers and 
the SDGs. The 17 SDGs were revisited, with a detailed 
review conducted of the underlying 232 indicators and 
their definitions. This allowed to map the six value levers 
to the SDGs at their lowest level, creating causal links that 
help to understand which levers can be pulled by industry 
to contribute directly to the SDGs (Figure 17, for the 
automotive industry). 

Finally, the 40 sustainable production developments 
identified in this White Paper were mapped to the relevant 
value at stake levers and SDG indicators. This resulted in a 
framework that can be used to measure the business value 
and SDG contribution of the Fourth Industrial Revolution 
developments identified in this paper, but which can also 

Chapter Three: The Accelerating 
Sustainable Production framework

be applied to understand the effect of innovations not 
discussed here. (Appendix 2 provides information on the 
methodology behind the framework.) 

The framework has been translated into an interactive tool. 
Leaders can use it to navigate the sustainability impacts 
and opportunities of the Fourth Industrial Revolution for a 
given set of innovations in their industry. In addition, they 
can wield them strategically to gain a triple-bottom-line 
value. The tool also enables stakeholders to run scenarios 
for any other development outside those identified in this 
paper. 

Business leaders can see the complex network of effects; 
when targeting an SDG, they can determine which levers 
to pull. Additionally, business leaders can understand and 
communicate their contribution to the United Nations 2030 
Agenda for Sustainable Development. Imagine being part 
of the automotive industry and wanting to understand 
the effect of blockchain (Figure 18). The tool maps the 
connection between the Fourth Industrial Revolution 
development and the SDGs, shows the links to the drivers 
of value creation and provides information on the time 
horizon, the technologies involved as well as the associated 
benefits and risks (Figure 19). 

The next step in this project will be to apply the model with 
partner countries and organizations to quantify the value 
and contribution to the SDGs.
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Figure 17: Accelerating Sustainable Production framework tool – mapping value drivers to SDG indicators in the 
automotive industry (screenshot)

Figure 18: Accelerating Sustainable Production framework – mapping value drivers to SDG indicators for a selected 
Fourth Industrial Revolution development (blockchain) in the automotive industry (screenshot)

Source: Accenture Strategy

Source: Accenture Strategy

Accelerating Sustainable Production Framework: The framework has been translated from an 
excel-based model into an interactive tool 

Screenshot of the framework showing the mapping of value drivers to SDG indicators in the automotive industry: 
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Figure 19: Accelerating Sustainable Production framework – detail of a selected Fourth Industrial Revolution development 
(blockchain) in the automotive industry (screenshot)

Source: Accenture Strategy
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Appendices

Appendix 1: Details of Fourth 
Industrial Revolution sustainable 
production developments
Automotive

Figure 20: Sustainable production technological developments and descriptions in the automotive industry

Source: Accenture Strategy research

Automotive 

Figure 20: Sustainable production technological developments and descriptions in the automotive industry 

Development Brief overview 

Short loop 
recycling 

 

Short loops, in which all recycling processes remain in the automotive sector, are set up to recover and recycle 
materials for (re)manufacturing leveraging multiple partnerships enabled by digital platforms and geo proximity. 
Current examples of such short loops are set up to recycle raw materials such as steel, copper, textiles, and 
plastics, keeping them as much as possible in the local automotive industry. 

Bio-based 
plastics and 
composites 

 

Replacing heavier metal and plastic components with engineering-grade biopolymers and/ or lighter natural-fibre-
reinforced plastics created partially or wholly by using plant feedstock. For example, structures can use flax fibres 
and bio-epoxy resin intermingled with carbon fibres in hybrid composites, which are lighter, cheaper and more 
environmentally sustainable than conventional polymers. These materials and parts are suitable for multiple vehicle 
systems, including powertrain applications.   

Smart  
Digital Twins 

 

The convergence of existing digital twin technology with the industrial internet of things and machine learning 
technologies, providing a near real-time updates and digital asset representation created by sensors deployed on 
the machines. The digital twin paradigm enables manufacturers to operate factories efficiently and gain timely 
insights into product performance. 

Cobotics 2.0 

 

A cobotic system includes a robot and a human collaborating to perform a task to achieve higher productivity and 
also protecting human workers from potentially hazardous jobs (i.e. jobs with higher incidence of accidents). A 
lighter weight, mobile plug and play generation is arriving on the factory floor to collaborate safely with human 
workers thanks to advances in sensor and vision technology, and computing power. 

Metal 3D 
printing 

 

A shift toward metal-printing to allow more flexibility in general and application-specific materials. Applications in the 
auto industry are characterized by the broad adoption of additive for production tooling, spare and custom parts, and 
increased industrial uptake to print components of end products. Building objects from the bottom up and using the 
material only where needed reduces waste, enables weight reduction, and has a cost advantage, especially when 
using materials like titanium and nickel-alloy steels. 

Blockchain 

 Blockchain is a distributed ledger technology that enables the creation of an immutable record of transactions to 
share with multiple participants in a business network. In the automobile sector, blockchain technology could enable 
all stakeholders to trace the origin of components back through every step in the supply chain, as well as in reverse 
logistics applications to enable remanufacturing and recycling.  
 

Smart  
Warehousing 
 

 Advances in Autonomous Mobile Robotics (AMR) technology now allow robots to be used in warehouses, where 
they support high volumes of small, multi-line orders, often in collaboration with warehouse workers. This leads to 
productivity gains, decrease in accidents and injuries amongst workers, as well as opportunities for skills 
development and retraining. Current research is focusing on incorporating machine learning into AMR solutions.  
 

Augmented 
workforce 

 The use of augmented reality tech (AR) in various stages of the vehicle production process. AR can support 
complex assembly, machine maintenance, expert support needs and quality assurance processes in the automotive 
industry. It is a collaborative tool that facilitates automation on the shop floor, enables productivity gains, resource 
efficiency and drives health and safety improvement.  
 

Robotic 
disassembly for 
remanufacturing 
 

 Robots are widely used in automotive manufacturing but not in remanufacturing, particularly at the critical stage of 
disassembly. Advances in this sphere could mean that end-of-life product disassembly for remanufacture will 
become easier, faster and more cost-effective, driving efficient resource use and enabling the circular economy in 
the industry.  
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Figure 21: Sustainable production technological developments in the automotive industry – time horizons, key 
technologies and business considerations

Source: Accenture Strategy research

Figure 21: Sustainable production technological developments in the automotive industry – time horizons, key 
technologies and business considerations 

Development Impact Time 
Horizon 

Key technology & innovation characteristics (non-
exhaustive) 

Key business 
considerations 

Short-loop 
recycling 

 

Short-term 
(present to 5 
years) 

• Physical tech: Advanced material sorting, Robotic 
disassembly 

• Digital tech: Track and trace technologies, Machine vision, 
Cloud; Big data 

• Other: Business model innovation (recovery and recycling, 
circular supply chains) 

• Vertical integration 
• Reverse logistics 
• Ecosystem adaptation  

Bio-based 
plastics and 
composites 

 

Short-term 
(present to 5 
years) 

• Physical tech: Nanotechnology (refers to the use of 
nanoparticles in lightweight materials), Advanced scientific 
instrumentation, Microfibre technologies e.g. for cellulose 
microfibre-enabled composites 

• Digital tech: Smart lab technologies for R&D, Big data, 
Cloud 

• Biological tech: Advanced green chemistry and chemical 
engineering 

• Regulatory approvals 
required 

• R&D investments  
• Recyclability  

Smart  
Digital Twins 

 Medium-
term (5 – 10 
years) 

• Physical tech: Sensors and actuators, computing 
technologies  

• Digital tech: IIoT, Simulation software, Machine learning/ AI 
for predictive analytics and simulation, Big data, Cloud 

• Other: Real time simulation and diagnostics on the factory 
floor 

• Data storage capabilities 
and cybersecurity 

• Capital investments  
• Connected products and 

services  

Cobotics 2.0 

 Short-term 
(present to 5 
years) 

• Physical tech: Machine 3D sensing, Sensors and 
actuators, Electromechanical design tools 

• Digital tech: Advanced software for industrial robots, IIoT 
• Other: New safety solutions based on sensors and machine 

sensing 

• Employee training 
• Process changes  
• Capital investments 

Metal 3D 
printing 

 Short-term 
(present to 5 
years) 

• Physical tech: 3D printers and printing methods, New 
materials e.g. metal additive manufacturing  

• Digital tech: Advances in CAD design, cybersecurity 
improvements  

• Other: Advances in material science 

• IP and cybersecurity 
• Stakeholder readiness 
• Recyclability  

Blockchain 
 Medium-

term (5 – 10 
years) 

• Physical tech: Sensors and data tags, RFID technology 
• Digital tech: Blockchain-distributed ledger, 

Cryptocurrencies 
• Other: Business model innovation (circular supply chains, 

sharing platforms)  

• Cybersecurity 
• Transparency and 

traceability  
• Talent acquisition/Capability 

development 

Smart  
Warehousing 
 

 Long-term 
(>10 years) 

• Physical tech: Autonomous mobile robotics 
• Digital tech: Machine learning, Vision sensing, Software 

technology 
• Other: Effectively supports the start of an assembly line 

working in logistics 

• Capital investments 
• Employee training 
• Process changes  

Augmented 
workforce 

 
Medium-
term (5 – 10 
years) 

• Physical tech: Display technology, mobile devices  
• Digital tech: IIoT, Cloud, Data and analytics, Software 

technology  
• Other: Process innovation for machine maintenance, quality 

control, complex assembly  

• Capital investments 
• Talent acquisition 

(Designers) 
• Employee training 

Robotic 
disassembly for 
remanufacturing 
 

 
Medium-
term (5 – 10 
years) 

• Physical tech: Robotic and cobotic technologies, Machine 
3D sensing and Machine Vision, Sensors and actuators, 
Electromechanical design 

• Digital tech: IIoT, Cloud, Data and analytics 
• Other: Other: Business model innovation (recovery and 

recycling, circular supply chains)  

• Capital investments 
• Employee training 
• Process changes  
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Electronics

Figure 22: Sustainable production technological developments and descriptions in the electronics industry

Source: Accenture Strategy research

Figure 22: Sustainable production technological developments and descriptions in the electronics industry 

Development Brief overview 

Digital 
Traceability of 
Minerals 

 
Blockchain-enabled software for precious and industrial metals markets to prevent "conflict minerals” from entering 
electronic products value chains. Private permissioned blockchain tech can chronologically and permanently log 
information that is copied across a computer network accessed by multiple collaborating parties. Transactions 
involving the source of ore can be linked back to previous sales transactions. 

Semiconductor 
Fab 4.0 

 

Refers to the application of advanced manufacturing techniques to the production of electronic components such as 
silicon wafer fabrication, semiconductors and microchips, which is very energy and resource intensive. Optimising 
operations can help improve sustainability significantly with a focus on the adoption of IIoT, big data, advanced 
analytics, machine learning and cobotics in both front and back-end fabs, especially in emerging markets where 
there is a considerable opportunity for energy and resource efficiency gains. 

Advanced 
Electronic 
Design 
Automation  

 

EDA, a simulation technology in the field of electronics design, calculates and predicts materials and components 
performance to create the optimum configuration for products. Used in chip design, it is now extending to the entire 
development process for an electronic device in combination with machine learning to increase the efficiency and 
accuracy of both design and production, resulting in faster time to market with accelerated prototyping, fewer batch 
defects and product recalls.  

Near-dark 
Factories 
 

 

Automated factories with robotic systems manufacture electronic products with limited or no human intervention. 
Though true lights-out production is still rare, more processes are running with limited human interaction. This 
results in considerable productivity gains, increased throughput and total capacity, whilst minimising errors and 
waste.  

Autonomous 
disassembly for 
electronics 

 
Refers to the disassembly of electronic products for component reuse and recycling, reducing the demand for virgin 
material and enabling closed material loops and Circular Economy business models. This development is enabled 
by modular design technology and advanced robotics and automation within mini disassembly factories. It 
decreases supply chain risk, mitigates reputation risk in the case of electronics and conflict minerals, and ensures 
the continuous reuse and valorisation of raw materials.  

3D printed 
electronics  
 

 The use of 3D printing for the production of electronic products hardware components. By 3D-printing printed circuit 
boards (PCBs), designers can obtain faster prototypes, thereby accelerating time to market and ensuring efficient 
use of resources. This application of 3D printing is very new and limited to prototyping at present but companies are 
already experimenting with a focus on conductive inks to match the properties of the traditional metals used for 
electronics.  

Green 
Electronic 
Materials 
 

 Synthetic biological materials from organic sources like bacteria and microbes can help meet the increasing demand 
for making smaller and more powerful devices. Currently functioning as wires, transistors and capacitators, these 
materials can decrease the dependence on non-renewable resources and the use of toxic components in 
electronics in a cost-efficient way. Proposed applications include biocompatible sensors, computing devices and as 
components of solar panels.  

Advanced 
Green 
Packaging 
 

 Material science innovation has allowed lead electronic product companies to incorporate sustainable packaging in 
the products leaving the factory gates, such as mycelium-based protective foam, use of AirCarbon®, and leftover 
wheat straw processed by enzymes. Benefits include increased reputation for companies and reduced carbon 
footprint.  
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Figure 23: Sustainable production technological developments in the electronics industry – time horizons, key 
technologies and business considerations

Source: Accenture Strategy research

Figure 23: Sustainable production technological developments in the electronics industry – time horizons, key 
technologies and business considerations 
 
Development Impact Time 

Horizon 
Key technology & innovation characteristics (non-
exhaustive) 

Key business 
considerations 

Digital 
Traceability of 
Minerals 

 

Medium-term 
(5 – 10 
years) 

• Digital tech: Blockchain, Cloud computing, Online 
platforms 

• Physical tech: RFID, Mobile 
• Other: Business model innovation (sharing platforms, 

circular supplies, recovery and recycling)  

• Cybersecurity 
• Reputation  
• Talent acquisition/capability 

development/ collaboration 

Semiconductor 
Fab 4.0 

 

Short-term 
(present to 5 
years) 

• Digital tech: Cloud computing and Big data, Advanced 
analytics, Cobotic systems and Machine learning 

• Other: Lean programmes 

• Capital investments 
• Long term competitiveness  

Advanced 
Electronic 
Design 
Automation  

 

Medium-term 
(5 – 10 
years) 

• Digital tech: Electronic Design Automation tools, Cloud 
computing, Big data, IIoT, Machine learning 

• Other: R&D process re-design  

• Cybersecurity 
• Capital investments 
• Talent acquisition/capability 

development 

Near-dark 
Factories 
 

 

Medium-term 
(5 – 10 
years) 

• Physical tech: Robotics and intelligent automation, 
Sensors and actuators 

• Digital tech: Factory floor planning tools, IIoT, Cloud 
computing and storage, Analytics 

• Cybersecurity  
• Capital investments 
• Stakeholder readiness 

Autonomous 
disassembly 
for electronics 

 

Medium-term 
(5 – 10 
years) 

• Physical tech: Advanced robotics and automation, 
Sensors and actuators, Mobile devices 

• Digital tech: Digitally enabled return logistics, Cloud 
computing 

• Other: Business model innovation (circular supplies), 
Process design  

• Employee training 
• R&D 
• Capital investments 

3D printed 
electronics  
 

 

Medium-term 
(5 – 10 
years) 

• Physical tech: Printers and printing methods/ inks, 
nanotechnology  

• Digital tech: CAD software, Electronic Design Automation 
tools  

• Other: Materials science, Mechanical engineering, 
Proprietary processes for Printed Circuit Boards printing 
and conductive inks  

• Capital investments 
• Internal capabilities 
• Innovation driver 

Green 
Electronic 
Materials 
 

 

Long – term 
(>10 years) 

• Physical tech: Nanotechnology, Advanced scientific 
instrumentation  

• Biological: Bio-hybrid systems/Synthetic biology and 
bioengineering, advanced green chemistry 

• Other: Materials science 

• Collaboration opportunities 
• Innovation driver 
• Links to bioscience and 

biotech 

Advanced 
Green 
Packaging 
 

 
Short – term 
(present to 5 
years) 

• Physical tech: Advanced scientific instrumentation 
• Biological tech: Advanced green chemistry, Enzyme 

solutions 
• Other: Materials science 

• Collaboration opportunities 
• Cost absorption  
• Supply chain readiness 
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Food and beverage

Figure 24: Sustainable production technological developments and descriptions in the food and beverage industry

Source: Accenture Strategy research

Figure 24: Sustainable production technological developments and descriptions in the food and beverage industry 
 
Development Brief overview 

Precision 
Agriculture 
 

 Integrates data and analytics with crop science to enable scientific farming decisions. It leverages technologies such 
as GPS, soil sensors, weather data and IoT for decisions related to fertiliser, irrigation, harvesting time, seed 
spacing etc. It is applicable to the entire agricultural production system and drives substantial yield gains whilst 
optimising for resource use. 

Advanced Bio 
Farming 
 

 The convergence of precision Ag-Tech and the use of biological solutions for agriculture developed via advanced 
green chemistry (e.g. bio-stimulants and bio-pesticides). They represent a broad spectrum of products based on 
naturally occurring micro-organisms for pre- and post- harvest application. The solutions reduce chemical pollution 
to land and water, help address biodiversity decline and mitigate risks to human health and wellbeing from 
conventional agri chemicals.  

Genome Editing 
 

 A technique that enables scientists to hack into genomes, make precise incisions, and insert desired traits into 
plants. In contrast, traditional genetic modification alters DNA to include genes from other organisms to produce a 
desirable trait. Genome editing can promote drought tolerance, increase in yields and productivity from agri 
equipment.  

Vertical Farming 
 

 Producing food indoors in vertically stacked layers with or without sunlight by deploying technologies that control all 
aspects of the agri environment, e.g. humidity, temperature, fertigation, angle of light exposure, etc. Technological 
and energy advances have helped accelerate this development in food production, increasing yields, reducing crop 
waste and logistics costs.  

Automated 
Agriculture 
 

 Leverages mechatronics-based technologies (such as agri robots) to drive greater automation of upstream 
production activities, increasing operational efficiency and resource productivity. Examples include robotic 
harvesting, sowing/ spraying with agri drones, mechanized milking of cows, autonomous tractors etc. Benefits 
include but are not limited to productivity increases, resource efficiency and the mitigation of risks with respect to 
labour shortages in developed economies.  

Agriculture 5.0 
 

 This development refers to the convergence of precision farming augmented by the next generation of agri robotic 
systems with machine learning and agri bioengineering to create the farm of the future, maximise productivity and 
yields, and minimise inputs. Currently in its experimental stage, this development is driven by academic and industry 
partnerships.  

Cellular & 
Tissue 
Engineering 
 

 The use of biotechnologies to engineer tissues from cell culture for end-product application, such as meat, or the 
use of cells/ microorganisms as a "factory" to produce fats and/ or proteins that make up an end food product, such 
as eggs and milk. If scaled sufficiently, this development has potential to decrease land and water use, reduce GHG 
emissions, and address antibiotic resistance in humans. 

3D Food 
Printing 
 

 
Machines that print, cook, and serve foods on a mass scale. 3D food printing can manufacture complex foods by 
combining nozzle technology with robotics and fresh ingredient handling. The technology can improve the nutritional 
value of processed foods, extend shelf life and decrease food waste.  

Supply-side 
Advanced 
Packaging 
 

 Packaging which interacts with or reacts to changes in the internal environment to maintain its contents within 
optimal parameters for as long as possible, or communicate information to value chain participants. Uses 
biotechnologies, and digital sensor systems, such as time temperature indicators, knock indicators and RFID labels. 
It could work with distributed ledgers and help decrease upstream food production waste. 

Supply Chain 
Traceability & 
Control 
 

 
Distributed ledger-enabled solutions to enhance traceability and transparency along the food value chain enhanced 
by track and trace technology, cryptocurrencies and digital, which converge together to disintermediate the value 
chain, indicate provenance and increase livelihoods for farmers via increased incomes.  

Advanced 
Organic 
Wastewater 
Treatment 
 

 Leverages wastewater-to-energy biochemical processes, advanced membrane solutions and biological catalysts 
used to speed up the bio-degradation of organic waste whilst harvesting energy. The technology removes >99% of 
the contaminants, enabling water reuse whilst generating renewable energy from biogas for use by the processing 
facility.  
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Figure 25: Sustainable production technological developments in the food and beverage industry – time horizons, key 
technologies and business considerations

Source: Accenture Strategy research

Figure 25: Sustainable production technological developments in the food and beverage industry – time horizons, key 
technologies and business consideration 
 
Development Impact Time 

Horizon 
Key technology & innovation characteristics (non-
exhaustive) 

Key business 
considerations 

Precision 
Agriculture 
 

 
Short-term 
(present to 5 
years) 

• Physical tech: GPS, Sensors, Drones, Mobile 
• Digital tech: IoT, Big data and Analytics, Cloud 
• Other: Crop science 

• Affordability/ Need for low 
cost solutions/ Access to 
finance  

• Need for skills/ capacity 
building 

Advanced Bio 
Farming 
 

 
Short-term 
(present to 5 
years) 

• Physical tech: GPS, Sensors, Drones, Mobile, Adv. Green 
Chemistry 

• Digital tech: IoT, Big data and Analytics, Cloud 
• Biological tech: Biocatalysis, bioremediation, microbiome 

technologies  

• Growth of the market 
• Product premium 
• Economies of scale  

Genome 
Editing 
 

 
Medium term 
(5 – 10 
years) 

• Physical tech: Genome sequencing chips, 3-D printed 
tooling 

• Digital tech: Big data, analytics, simulation modelling, AI (in 
some experimental cases)  

• Biological tech: CRISP-R/Cas9 gene editing tool 

• Policy and regulation 
• Consumer awareness 
• Early stage innovation (gene 

targets are somewhat 
limited)  

Vertical 
Farming 
 

 
Short-term 
(present to 5 
years) 

• Physical tech: Sensors and actuators, Agri engineering  
• Digital tech: Big data, Cloud, Analytics, Mobile 
• Biological tech: Hydroponics, Aeroponics, Aquaponics  
• Other: Circular Economy business models  

• Energy intensity 
• Skills / capacity building 

Automated 
Agriculture 
 

 
Medium term 
(5 – 10 
years) 

• Physical tech: GPS, Drones, Agri robotics, Sensors and 
actuators  

• Digital tech: Big data, Cloud, Analytics, Mobile, Machine 
sensing and machine vision 

• Affordability/ Access to 
finance  

• Growth of the market 

Agriculture 5.0 
 

 

Long-term 
(>10 years) 

• Physical tech: GPS, Drones, Agri robotics, Sensors and 
actuators  

• Digital tech: Big data, Cloud, Advanced analytics, Mobile, 
Machine sensing and machine vision, Machine learning  

• Biological tech: Genome editing 

• Affordability/ Access to 
finance  

• Need for skills/ capacity 
building 

• Stakeholder readiness 

Cellular & 
Tissue 
Engineering 
 

 
Medium term 
(5 – 10 
years) 

• Physical tech: Advanced scientific instrumentation, 3-D 
printed tooling 

• Digital tech: Big data, Analytics, Cloud 
• Biological tech: Bio-fabrication, Bio-catalysis, Genome 

editing 

• Growing market and 
decreasing costs 

• Partnerships for scaling 
• Consumer readiness  

3D Food 
Printing 
 

 
Long-term 
(>10 years) 

• Physical tech: 3D printers and printing methods, New 
materials e.g. food cartridges and edible binding cement  

• Digital tech: Advances in CAD design 
• Other: Food & Nutrition sciences, Hydrocolloids 

• High-end and low-cost 
solutions 

• Consumer awareness 
• Early stage innovation  

Supply-side 
Advanced 
Packaging 
 

 
Short-term 
(present to 5 
years) 

• Physical tech: New packaging materials 
• Digital tech: Chips, data tags, RFID, Blockchain, Sensors, 

Data, Could  
• Biological tech: Bioactive technologies 

• Upstream applicability 
• Affordability/ Need for low 

cost solutions 
• Supply chain integration 

Supply Chain 
Traceability & 
Control 
 

 
Medium term 
(5 – 10 
years) 

• Physical tech: GPS 
• Digital tech: Blockchain/ distributed ledger solutions, 

cryptocurrencies (in some cases), RFID and data tags, Digital 
platforms  

• Other: Circular Economy business models  

• R&D investments 
• Partnerships for scaling 
• Supply chain integration 

Advanced 
Organic 
Wastewater 
Treatment 
 

 
Short-term 
(present to 5 
years) 

• Physical tech: Effluent treatment plants/ Bioreactors, 
Membrane solutions, Energy harvesting  

• Digital tech: Control dashboards, Data, Analytics, Cloud  
• Biological tech: Biocatalysts, Electromicrobiology, Anaerobic 

& Aerobic treatments 

• Waste stream applicability  
• Capital investments 
• Economies of scale  
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Textiles, apparel and footwear

Figure 26: Sustainable production technological developments and descriptions in the textiles, apparel and footwear 
industry

Source: Accenture Strategy research

Figure 26: Sustainable production technological developments and descriptions in the textiles, apparel and footwear 
industry 
 
Development Brief overview 

Gen-Edited 
Fibre Crops 

 Leveraging CRISPR/Cas9 genome editing for fibre crop improvement, especially in relation to cotton. The 
technology has the potential to address issues of decreasing yields due to soil erosion, water intensity and overuse 
of agri chemicals, whilst presenting a value creation opportunity for industry leaders and major exporting countries of 
cotton, such as China, India and US.  

Advanced Bio 
Farming 

 The convergence of precision Ag-Tech and the use of biological solutions for agriculture developed via advanced 
green chemistry, such as bio-stimulants and bio-pesticides. These represent a broad spectrum of products based on 
naturally occurring micro-organisms for pre- and post- harvest application, which reduce pollution to land and water 
and reduce negative impact on local biodiversity.  

Precision 
Agriculture  
(for fibre crops) 

 Integrates data and analytics with crop science to enable scientific farming decisions. It leverages technologies such 
as GPS, soil sensors, weather data and IoT for decisions related to fertiliser, irrigation, harvesting time, seed 
spacing etc. It is applicable to the entire agricultural production system and drives substantial yield gains whilst 
optimising for resource use.  

Upcycled Textile  
Fibres  

 Chemical technology has already produced upcycled cellulose from wood pulp producing fibres that are superior to 
commercially available viscose. The technology has recently become applicable to cotton fibres at commercial 
scale. The method uses less water and chemicals, emits less CO2 and prolongs the usage of raw inputs whilst 
offering a viable business solution for closing material loops in apparel. Building on this process, researches now 
have found ways to apply similar methods to cotton-polyester blends through chemical innovation.  

Biofabricated 
Leather  

 The production of leather without the use of animal hides via lab-grown biofabricated tissue from in-house created 
collagen cells. The collagen is purified and finished utilizing a simplified process of tanning that uses fewer 
chemicals. There is no waste because size and shape are determined by design whilst physical properties, such as 
variable sheet topography, are customisable. The process is faster and cleaner, resulting in an ethical product with 
reduced environmental footprint.  

Next gen Bio-
Based 
Polyester   

 Bio-based monomers have long been used to produce high-performance chemicals and polymers with textile 
applicability. However, the latest innovations by Chemical Industry leaders have now resulted in novel high-
performance bio-based polyester that is cost effective, 100% renewable and recyclable (from corn stock).  
Biodegradability and long-term viability of sourcing remain a challenge but the development has the potential to be 
part of the solution mix required to move away from petroleum-derived products.  

Alternative  
Natural 
Fibres 

 Textile fibres made from non-edible plants or parts of plants that are high in cellulose (e.g. pineapple leaves, 
coconut husks, banana stems). The source of fibre is farm residue that is often not of much commercial value. This 
also includes natural textile fibres that could be used as alternatives to cotton and petroleum-based textiles, pure or 
in textile blends, such as flax, hemp, bamboo and seaweed. These plants can provide fibres with superior properties 
that are renewable and biodegradable. 

Footwear 
Factory 5.0 

 New type of shortened-supply-chain production micro-plants located in the demand markets. These are highly 
automated and use processes such as computerised knitting, robotic cutting and advanced additive manufacturing 
for mass production. At the same time, prototypes are designed and tested by computers using digital twin tech. 
Besides enabling mass customisation and faster time to market, the micro plants offer improved environmental 
performance based on increased resource productivity. 

Nano-Tech 
Enhanced 
Fabrics 

 
Nanoparticles-treated fabrics can repel stains and dirt, or even self-clean, to reduce washing, drying and ironing 
needs resulting in reduced energy and water footprint over the product life-cycle. This technological development 
enables differentiation and premiumisation opportunities for clothing manufacturers.  

Blockchain for 
Fashion 

 Distributed ledger-enabled solutions to enhance traceability and transparency along the textile fibres value chain 
enhanced by mobile technologies and embedded electronics converging together to garner greater trust, reputation 
and brand loyalty throughout the product lifecycle. The technology could also be used to verify upstream origin of 
materials, workers conditions, fabric composition, chemicals used, etc.  

Advanced 
Organic 
Wastewater 
Treatment 

 Leverages wastewater-to-energy biochemical processes, advanced membrane solutions and biological catalysts 
used to speed up the bio-degradation of organic waste whilst harvesting energy. The technology removes >99% of 
the contaminants, enabling water reuse and contributing to the renewable energy mix of individual processing 
facilities.  

Automated 
Sewing 

 Advances in robotics, machine vision, as well as new process innovations have enabled novel approaches to the 
automation of sewing on the apparel shop floor, which has remained a largely manual activity to date. Currently 
available solutions are applicable but not limited to clothing and allow manufacturers to move supply chains closer to 
customers at a lower cost. Sustainability benefits include reduced transportation and waste.  
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Figure 27: Sustainable production technological developments in the textiles, apparel and footwear industry – time 
horizons, key technologies and business considerations

Source: Accenture Strategy research

Figure 27: Sustainable production technological developments in the textiles, apparel and footwear industry – time 
horizons, key technologies and business considerations 
 
Development Impact Time 

Horizon 
Key technology & innovation characteristics (non-
exhaustive) 

Key business 
considerations 

Gen-Edited 
Fibre Crops 

 
Medium term 
(5 – 10 
years) 

• Physical tech: Genome sequencing chips, 3-D printed 
tooling 

• Digital tech: Big data, analytics, simulation modelling, AI (in 
some experimental cases)  

• Biological tech: CRISP-R/Cas9 gene editing tool 

• Policy and regulation 
• Consumer awareness 
• Early stage innovation 

(experimental evidence with 
cotton)  

Advanced Bio 
Farming 

 
Short-term 
(present to 5 
years) 

• Physical tech: GPS, Sensors, Drones, Mobile, Adv. Green 
Chemistry 

• Digital tech: IoT, Big data and Analytics, Cloud 
• Biological tech: Biocatalysis, bioremediation   

• Growth of the market 
• Product premium 
• Economies of scale  

Precision 
Agriculture  
(for fibre crops) 

 
Short-term 
(present to 5 
years) 

• Physical tech: GPS, Sensors, Drones, Mobile 
• Digital tech: IoT, Big data and Analytics, Cloud 
• Other: Crop science 

• Affordability/ Need for low 
cost solutions/ Access to 
finance  

• Need for skills/ capacity 
building 

Upcycled 
Textile  
Fibres  

 
Short-term 
(present to 5 
years) 

• Physical tech: Proprietary chemical solutions in closed 
loops, Mechanical engineering technologies 

• Digital tech: Digital platforms and supply chain tools  
• Other: Circular Economy business models  

• Reverse logistics 
• Scale / Capacity building 
• Upstream integration 

Biofabricated 
Leather  

 

Long-term 
(>10 years) 

• Physical tech: Advanced scientific instrumentation, 3-D 
printed tooling 

• Digital tech: Big data, Analytics, Cloud 
• Biological tech: Bio-fabrication and engineering, Genome 

editing 

• Blue ocean market  
• Scale / Capacity building 
• Product premiumisation 

opportunity  

Next gen Bio-
Based 
Polyester   

 
Short-term 
(present to 5 
years) 

• Physical tech: Advanced green chemistry & industrial 
bioscience 

• Digital tech: Big data, Analytics, Cloud 
• Other: Circular Economy business models  

• Upstream integration 
• Scale / Capacity building 
• Farmer empowerment 

Alternative  
Natural 
Fibres 

 
Short-term 
(present to 5 
years) 

• Physical tech: Advanced green chemistry & industrial 
bioscience 

• Digital tech: Big data, Analytics, Cloud 
• Other: Circular Economy business models  

• Upstream integration 
• Scale / Capacity building 
• Raw material aggregation 
• Farmer empowerment  

Footwear 
Factory 5.0 

 
Medium term 
(5 – 10 
years) 

• Physical tech: IIoT, Sensors and actuators, 3D printing, 
robotics, New materials  

• Digital tech: Cloud, Supply chain digitalization, Digital Twin 
• Other: Reshoring of production  

• Capital investments 
• Need for new skills/ capacity 

building 

Nano-Tech 
Enhanced 
Fabrics 

 
Medium term 
(5 – 10 
years) 

• Physical tech: Nanotechnology-based coatings for fabrics, 
New materials 

• Digital tech: Cloud, Big data  

• R&D investments 
• Regulatory environment 
• Supply chain integration 

Blockchain for 
Fashion 

 
Medium term 
(5 – 10 
years) 

• Physical tech: GPS, microchips/ wearable electronics  
• Digital tech: Blockchain/ distributed ledger solutions, 

cryptocurrencies (in some cases), Digital platforms  
• Other: Circular Economy business models  

• R&D investments 
• Partnerships for scaling 
• Supply chain integration 

Advanced 
Organic 
Wastewater 
Treatment 

 
Short-term 
(present to 5 
years) 

• Physical tech: Effluent treatment plants/ Bioreactors, 
Membrane solutions, Energy harvesting  

• Digital tech: Control dashboards, Data, Analytics, Cloud  
• Biological tech: Biocatalysts, Electromicrobiology, Anaerobic 

& Aerobic treatments 

• Waste stream applicability  
• Capital investments 
• Economies of scale  

Automated 
Sewing 

 
Medium term 
(5 – 10 
years) 

• Physical tech: Sensors and actuators, Robotics 
• Digital tech: Machine vision, Machine sensing, M2M 

communication  
• Other: Chemical science 

• R&D Investment (early stage 
development)  

• Capital investments 
• Process redesign 
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Appendix 2: Scope, terms, 
definitions and methodologies
Scope

The research scope for Fourth Industrial Revolution 
technologies applicable to sustainable production was 
based on the following criteria:

–	 Energy and raw materials extraction assumed to be out 
of scope for this analysis

–	 Time to mainstream adoption: from present day to 10 
or more years

–	 Upstream value chain applicability (cradle-to-factory-
gate scope)

–	 Production focus including but not limited to 
manufacturing activities

–	 Potential to drive positive effect on sustainability 
towards achieving one or more of the SDGs 

–	 Advanced Fourth Industrial Revolution-enabled 
technologies in the innovation or early adoption stages, 
based on Rogers’ theory of diffusion of innovations

Countries were selected based on their developing market 
focus, the relative economic importance of in-scope 
industries for the national economy, data from the United 
Nations Industrial Development Organization (UNIDO) 
on the share of manufacturing value added (MVA) in 
GDP, as well as the country’s impact on world MVA and 
manufacturing trade.

The manufacturing industries were selected by examining 
the UNIDO classification system, focusing on those that 
supply end products to consumers. Data on the economic, 
social and environmental importance of industries to 
the global economy was also considered. A “basket” of 
low- and high-tech industries was then selected to reflect 
UNIDO’s finding that such industries typically have higher 
environmental productivity (they generate fewer emissions 
when producing $1 of value added). The underlying 
assumption in this approach was to select the industries 
most susceptible to sustainable technology interventions. 
Finally, the interest of the project community was also 
considered when arriving at the final four industries. 

Key terms and definitions

–	 Production: The full spectrum of value-adding 
activities in the cradle-to-factory-gate part of a given 
industry value chain, excluding those that are assumed 
to be out of scope for this analysis

–	 Sustainable production: The manufacturing of 
products and product inputs, and the creation of 
related services, which respond to consumer and 
market needs and bring a better quality of life while 
minimizing the use of natural resources and toxic 
materials. In the process, emissions of waste and 
pollutants are also minimized to avoid jeopardizing the 
needs of further generations (based on the definition of 

sustainable consumption and production from the Oslo 
Symposium in 1994)

–	 Fourth Industrial Revolution sustainable production 
development: A set of digital, physical and/or 
biological Fourth Industrial Revolution technologies 
converging together to change manufacturing inputs, 
processes and outputs, and enable new business 
models, with the potential to increase value creation 
across the triple bottom line (economic, social and 
environmental)

–	 Fourth Industrial Revolution developments time 
horizons: Expected time to full technology maturity 
and mainstream adoption, based on Accenture 
analysis, industry interviews of small and medium-sized 
enterprises, and press searches (short term: 0-5 years; 
medium term: 5-10 years; long term: 10+ years)

–	 Circular economy: According to the Waste and 
Resources Action Programme, “an alternative to 
a traditional linear economy (make, use, dispose) 
in which we keep resources in use for as long as 
possible, extract the maximum value from them while 
in use, then recover and regenerate products and 
materials at the end of each service life”

Methodologies

Fourth Industrial Revolution industry developments 
and the UN Sustainable Development Goals
 
The United Nations Sustainable Development Goals 
(SDGs) serve as the basis of the framework for identifying 
the Fourth Industrial Revolution developments with the 
greatest potential to drive positive economic, social and 
environmental effects in sustainability. Fourteen of the 17 
SDGs were selected and grouped to make up the three 
sustainability assessment areas, and the full list of the 
related targets and indicators was narrowed down to those 
relevant to production systems in the in-scope industries. 
The identified technological developments were evaluated 
for their link (or lack thereof) with each of the 14 SDGs, 
based on evidence from primary and secondary research. 
Where a direct link could be documented, further research 
determined an aggregate score for the given development 
across all the linked SDGs and in terms of upside potential 
and downside risks.

The SDGs selected and grouped along the economic, social 
and environmental dimensions are shown in Figure 28.

Our research then identified 40 technological developments 
across value chain segments – from “cradle to gate” (raw 
material extraction to downstream manufacturing) – and 
across our four target industries. Each development was 
then scored to determine more precisely the expected 
effect on accelerating sustainable production. The basis 
for our scoring included a review of literature coupled with 
interviews of industry and academic leaders. A range of 
scores was given to account for factors such as affordability, 
the rate of adopting technology and technological 
development paths. The scale has five positions, from -2 to 
+2. 
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Figure 28: Sustainable Development Goals linked to 
production activities and grouped by the three assessment 
areas

Figure 29: Country Readiness Index framework used to identify regional opportunities

Source: Accenture Strategy research

Source: A.T. Kearney/World Economic Forum analysis

Regional opportunities

The regional assessment of opportunities for accelerating 
sustainable production is based on the World Economic 
Forum Country Readiness Index framework (Figure 29), 
which concerns factors related to: 

–	 The structure of production – These factors capture 
the current baseline of production and measure the 
economic complexity and manufacturing value added 
as a percentage of GDP

–	 The drivers of production – These factors capture the 
country’s preparedness to capitalize on emerging 
technologies to transform its production systems 

In all, the framework includes levers that may determine 
how well a country is positioned to embrace Fourth 
Industrial Revolution developments, and may help identify 
the necessary actions to accelerate them.

Structure of 
production
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In conducting the regional assessment, the steps outlined 
below were followed: 

–	 As a first step, the World Economic Forum Country 
Readiness Index framework was used to understand 
the regional context. This step helped in understanding 
the regional nuances that could influence how well a 
particular Fourth Industrial Revolution development can 
be adopted in a region.

–	 Thereafter, innovative case studies were gathered 
to capture the key Fourth Industrial Revolution 
developments identified in the analysis. The choice 
of case studies was made to cover the four industrial 
sectors in the scope of this study and across the key 
thematic developments identified through the study.

–	 Regional opportunities were then identified based on 
the understanding of the regional context (as obtained 
from the framework) and an understanding of the 
critical success factors for the identified case studies.

–	 Lastly, the potential actions and implications for 
the businesses and policy-makers were identified 
to facilitate accelerated adoption of the short-listed 
regional opportunities.

 
The Accelerating Sustainable Production framework

The framework builds on the value at stake approach 
developed as part of the World Economic Forum Digital 
Transformation of Industries (DTI) project. The scope is 
extended to cover physical and biological technologies as 
well as digital technologies. 

The original framework has been adjusted to address 
the specificity of the manufacturing sector. In particular, 
Environment was separated from Society to emphasize its 
importance and include several new non-financial impact 
areas. 

The framework has a twofold purpose: (1) to measure 
the total value from implementing a development in the 
production system, and (2) to identify the sources of impact 
on SDGs and the underlying SDG indicators.To construct 
the framework and select the indicators, we used the 
following methodology:

1.	 Verification of the value levers used in the DTI’s value at 
stake framework

2.	 Comprehensive literature review to identify 
indicators that capture missing socio-economic and 
environmental impacts 

3.	 Review of the SDG indicators – detailed review of all 
SDG indicators, and the methodology developed by 
the Inter-Agency and Expert Group on SDG Indicators 
(IAEG-SDG)

4.	 Creation of a preliminary framework, which was used 
to map the potential effects of our in-scope Fourth 
Industrial Revolution developments. The framework 
was refined as part of this process.

Framework structure

Value levers
The structure of the Accelerating Sustainable Production 
framework was developed starting with the original value 
at stake framework from the DTI initiative. Recognizing our 
sustainability focus, the original structure was modified 
by separating society from the environment and adding 
additional value levers, thus ensuring that all potentially 
negative effects were captured.

Our Accelerating Sustainable Production framework (Figure 
30) differentiates between value to industry (value addition 
and migration) and value to society (customer benefits, 
labour, society and the environment):

–	 Value addition – benefits from implementing Fourth 
Industrial Revolution developments to the analysed 
industry, divided into two main groups: (1) improved 
operating profits from producing more from the same 
inputs or receiving higher premiums, and (2) reduced 
costs, both direct (such as input costs or labour) and 
indirect (such as utilities or equipment)

–	 Value migration – operating profits that will shift 
between different industries and that take two 
main forms: (1) increased revenue to providers of 
technologies, and (2) revenue loss to providers of 
substituted products and inputs. As a result, the 
replaced parts of the economy are taken into account

–	 Customer benefits – benefits from consumption of 
improved products as a result of the development, with 
three main categories: time, cost and quality

–	 Labour – a separate branch because of its significant 
role in the production process, and with three 
main sources of value: (1) job opportunities (either 
from changes in employment or from training), (2) 
remuneration and (3) working conditions

–	 Society – a category covering spin-off benefits to the 
communities affected by improvements to factories 
or changes from new products, with two main forms: 
(1) health and safety, which focuses on reduced 
mortality/improved life expectancy, and (2) quality of 
life from improved access to amenities (e.g. safe water, 
electricity) or reduced inequalities (from labour-related 
sources)

–	 Environment – an area grouped into four 
subcategories: (1) emissions to air (GHG emissions) 
and particulate matter, (2) water use (improved water 
usage and discharge), (3) land use (improved land 
utilization) and (4) material use, which includes waste 
management (Climate effects, other than water 
and those that are land-related, are assumed to be 
captured in the estimated cost of emissions.)
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Figure 30: Framework for analysing value at stake for individual sustainable production technology developments

Source: Accenture Strategy analysis

Effects on SDGs

Finally, we established connections between the lowest-
level value levers and SDG indicators. To do this, we 
performed a detailed analysis of SDG indicators and their 
definitions. 

The SDG indicators were developed by the IAEG-SDG and 
agreed to by the United Nations Statistical Commission. 
The development process took one year and involved 
Member States, with regional and international agencies 
as observers. The list of indicators used was based on the 
latest developments from the IAEG-SDG in April 2017. 

Our aim was to create causal links between value levers 
and SDG indicators, where changes to value levers 
contribute to the SDGs. In this way, once the computational 
element is added, how a particular development helps a 
region move closer to reaching a target can be quantified. 
We took the position of entire industries or large industry 
players, as many of the economic indicators (primarily 
under SDG 8 and 9) refer to macroeconomic changes.

This exercise will support policy and business leaders in 
designing their strategies, and will help to see the list of 
SDGs that different elements of investment opportunities 
contribute towards. As a result, leaders can have a 
comprehensive view of the effects when performing 
qualitative analysis. In the future, this exercise will form a 
foundation for detailed economic models to quantify the 
value creation potential of sustainable innovation in different 
markets.
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