Book
Practical Fairness
Achieving Fair and Secure Data Models
1×
Войдите, чтобы прослушать аудиоверсию краткого изложения.
Recommendation
Machine learning is becoming ubiquitous. This branch of artificial intelligence works by teaching a computer program what correct output looks like. This powerful method raises questions regarding fair outcomes for the people machine learning (ML) affects. Software engineer and attorney Aileen Nielsen examines different kinds of fairness and how training data and algorithms can promote them. For those developing machine learning models, she provides useful examples in Python.
Summary
About the Author
Software engineer and lawyer Aileen Nielsen combines work at a deep learning start-up with a fellowship in law and technology at ETH Zürich.
Learners who read this summary also read
Related Skills
AI Transformation
Корпоративные финансы
Развивайте навыки мышления
Управление персоналом
Повышайте культурную компетентность
Лидерство
Leverage AI for Finance
Leverage AI for Leadership
Leverage AI in Your Daily Tasks
Софт-скиллз
Повышайте цифровую грамотность
Understand AI
Навыки для работы
Проводите политику DEI
Use AI for Credit Scoring
Используйте ИИ этично
Leverage AI for Compliance
Protect Your Data and Privacy
Предупреждайте когнитивные искажения
Use AI Ethically as a Leader
Understand AI Ethical Impact
Изучите тему неосознанной предвзятости
Comment on this summary