跳过导航
Beyond the Algorithm
Book

Beyond the Algorithm

AI, Security, Privacy, and Ethics

Addison-Wesley, 2024 更多详情

Read Offline or Discuss

 Discuss

Editorial Rating

8

getAbstract Rating

  • Applicable
  • Well Structured
  • For Beginners

Recommendation

Artificial Intelligence (AI) deploys Machine Learning (ML) to generate algorithms and statistical models used in a variety of fields, including healthcare, finance, transportation, communications, and the energy sector. But, as AI security experts Omar Santos and Petar Radanliev argue, the rise of AI also brings moral challenges. It can open companies up to a number of legal and security risks, including cyberattacks. By offering a non-technical overview of AI’s uses and raising awareness of AI-related vulnerabilities, Santos and Radanliev empower readers to tackle related challenges head-on.

Summary

People have speculated about the possibility of Artificial Intelligence (AI) for centuries.

People have imagined creating intelligent machines since ancient times. Greek myths featured mechanical creatures capable of independent thought. The great 17th-century philosopher René Descartes theorized that the human mind was machine-like and posited that mathematics might be able to explain its functions. The first real advances in artificial intelligence came during the Second World War when British mathematician and cryptographer Alan Turing developed his Turing machine. But it wasn’t until the legendary 1956 Dartmouth College “Dartmouth Conference,” which included AI founders like Alan Turing, Marvin Minsky, and Herbert A. Simon, that AI became a real research field. Then the 1960s and 1970s saw significant advances in “expert systems” capable of human-like analysis.

AI leverages Machine Learning (ML) to analyze data, make predictions, and automate tasks.

People refer to the AI systems and tools that exist today as “narrow” AI. This form of AI performs specific tasks — like image recognition or natural language...

About the Authors

Omar Santos is an expert in ethical hacking, vulnerability research, incident response, and AI security. He is the author of numerous books and video courses. Petar Radanliev completed his PhD at the University of Wales and became a Post-Doctoral Research Associate in the Department of Computer Science at the University of Oxford.


Comment on this summary

More on this topic

Related Skills

人工智能转型,实施基于人工智能的流程优化,跨部门整合人工智能解决方案,评估企业采用人工智能的准备情况
推动人工智能转型,在各部门实施人工智能转型,协调与利益相关者的人工智能倡议,监督人工智能技术的整合,
人力资源
领导力
利用人工智能进行人力资源管理,将人工智能洞察融入人力资源战略,实施自动化人力资源数据分析系统,利用人
利用人工智能提升领导力,将人工智能洞察融入领导决策,使用人工智能工具增强领导战略,通过人工智能分析推
在日常任务中利用人工智能,将人工智能工具整合到工作流程中,使用人工智能自动化重复性任务,利用人工智能
理解人工智能,向同事解释基本的人工智能概念,区分人工智能与传统软件解决方案,总结人工智能在现代工作场
职场技能
利用人工智能进行学习与发展,将人工智能工具整合到培训项目中,通过人工智能洞察提升员工成长,利用人工智
了解生成性人工智能,识别生成性人工智能机会,探索生成性人工智能的应用,生成性人工智能在商业中的案例研
理解人工智能对工作的影响,评估人工智能对日常任务的影响,评估人工智能驱动的工作场所变化,识别人工智能
使用人工智能进行漏洞管理,将人工智能整合到漏洞评估中,利用人工智能自动化漏洞扫描,通过人工智能分析增
安全使用人工智能,确保人工智能安全合规,保护敏感数据,安全管理人工智能访问,降低人工智能安全风险,确
了解人工智能风险,识别商业中的人工智能风险因素,评估人工智能故障的影响,评估人工智能系统中的潜在偏见
利用人工智能提升网络安全,识别人工智能在网络安全中的应用,将人工智能工具整合到安全措施中,利用人工智
使用人工智能进行数据分析,实施人工智能以增强数据洞察,将人工智能集成到数据处理任务中,利用人工智能工
了解大型语言模型,分析大型语言模型的好处,评估模型在语言任务中的表现,大型语言模型对行业的影响,大型
作为领导者,伦理地使用人工智能,驾驭人工智能领导中的伦理挑战,确保伦理的人工智能部署决策,优先考虑人
了解人工智能对社会的影响,评估人工智能对社会结构的影响,评估人工智能对公共政策的影响,认识人工智能在
以德驾驭 AI
理解人工智能的伦理影响,导航人工智能开发中的伦理考虑,评估人工智能对数据隐私的影响,预见人工智能算法