跳过导航
Erfolg dank Data Science
Buch

Erfolg dank Data Science

Ein Handbuch für Business-Leader

Columbia Business School Publishing, 2024 Mehr

Buch kaufen


Bewertung der Redaktion

8

Qualitäten

  • Überblick
  • Praktische Beispiele
  • Für Einsteiger

Rezension

Wer heute ein Unternehmen oder eine Abteilung leitet, sollte sich schlau in Sachen Data Science machen – auch wenn sie oder er im Gegensatz zu den beiden Autoren dieses Buches kaum direkt damit zu tun hat. Nur wer die Optionen versteht, die die Datenwissenschaft dem eigenen Business bieten kann, wird ein Maximum dessen herausholen, was heute möglich ist. Dieser praxisorientierte Leitfaden enthält eine Vielzahl konkreter Beispiele – eine Lektüre mit großem Aha-Potenzial.

Zusammenfassung

Arbeiten Sie mit Ihrem Data-Science-Team zusammen, um einen optimalen Daten-Workflow aufzusetzen.

Steve, der Teamleiter eines großen Finanzunternehmens, wollte die Arbeitsabläufe in der Inkassoabteilung verbessern. Sein Ziel war, die eingezogenen Beträge zu maximieren und die Kosten so gering wie möglich zu halten. Er konnte dafür aber nicht mehr Personal einstellen. Also brauchte das Unternehmen einen Prozess, der mithilfe von datengestützten Erkenntnissen bestimmte Konten priorisierte und den Mitarbeitenden half, effektiver zu arbeiten. Mit diesem Ziel vor Augen wandte Steve sich an das Data-Science-Team. Er erklärte, worauf es ihm ankam und welche Einschränkungen es in der Inkassoabteilung gab. Anschließend entwickelten Steve und die Data-Scientists gemeinsam einen Daten-Workflow, um das Problem zu lösen.

Daten aus verschiedenen Quellen zu sammeln und an einem Ort zusammenzuführen, ist in der Regel ein automatisierter Prozess, der als „Extrahieren, Transformieren und Laden (ETL)“ bezeichnet wird. Unternehmen können Daten aus bestehenden Datenbanken extrahieren oder relationale Datenbanken aus der Kaufhistorie ihrer Kundschaft, aus Telefonaten...

Über die Autoren

Howard Steven Friedman ist Data-Scientist mit Erfahrung sowohl im privaten als auch im öffentlichen Sektor. Er ist außerordentlicher Professor an der Columbia University. Akshay Swaminathan ist ebenfalls Data-Scientist. Er ist auf Gesundheitssysteme spezialisiert. An der Stanford University School of Medicine ist er Knight-Hennessy-Stipendiat.


Kommentar abgeben

  • Avatar
  • Avatar
    E. B. vor 1 Jahr
    An der Uni funktioniert das so vielleicht, dass alles nur als temporäres Projekt betrachtet wird. In der Industrie müssen die Projekte auch im Nachgang betrieben werden und da sind weitere und evtl. andere Ressourcen hinzuzufügen, sonst marodiert die super teure Entwicklung, ist gealtert und schließlich mehr wert. Ohne definierte Verantwortlichkeiten ist der Betrieb sehr schwer und der Nutzen der Entwicklung nicht klar. Hand in Hand mit PM ist m.E. nicht ausreichend gedacht für einen nachhaltigen Erfolg. Auf eine Bewertung von 8 käme ich hier nicht. Buch ist sehr stark auf Medizin Use Cases ausgerichtet. Ziemlich einseitig , was m.E. die Bewertung ebenfalls mindert.

Mehr zum Thema

Verwandte Skills

人工智能转型,实施基于人工智能的流程优化,跨部门整合人工智能解决方案,评估企业采用人工智能的准备情况
发展思维能力
数字化转型
发现和理解数字技术,跟上新兴技术趋势,探索新数字技术的影响,了解数字技术在工作中的好处,识别商业中新
创业
高管领导力
实施数字基础设施,安装强大的数字基础设施解决方案,管理数字基础设施供应商关系,确保数字基础设施的可扩
领导力
利用人工智能制定商业战略,战略性地将人工智能融入商业计划,制定以人工智能驱动的企业战略,评估人工智能
利用人工智能提升客户体验,增强客户参与度,利用人工智能工具个性化客户互动,使用人工智能自动分析客户反
利用人工智能提升领导力,将人工智能洞察融入领导决策,使用人工智能工具增强领导战略,通过人工智能分析推
利用人工智能进行管理,将人工智能工具整合到管理流程中,使用人工智能分析管理数据,利用人工智能增强团队
利用人工智能进行营销,识别营销中的人工智能应用机会,评估用于营销洞察的人工智能工具,比较用于营销任务
利用人工智能进行产品开发,识别产品创作的人工智能工具,将人工智能整合到产品生命周期中,利用人工智能洞
在日常任务中利用人工智能,将人工智能工具整合到工作流程中,使用人工智能自动化重复性任务,利用人工智能
做出明智决策
管理
市场营销
生产与物流
销售
增强数字素养
理解人工智能,向同事解释基本的人工智能概念,区分人工智能与传统软件解决方案,总结人工智能在现代工作场
在生产和供应链中使用人工智能,将人工智能融入供应链决策,通过人工智能技术简化生产,提高供应链效率,利
职场技能
使用人工智能进行客户细分,应用人工智能进行细分分析,利用人工智能识别客户细分,整合人工智能驱动的洞察
数据分析
使用人工智能进行写作和沟通,利用人工智能撰写商务邮件,使用人工智能工具改善书面报告,整合人工智能以实
理解统计学
使用人工智能进行客户旅程映射,整合人工智能于客户旅程映射中,利用人工智能优化客户接触点,借助人工智能
使用人工智能进行订单预计到达时间预测,实施人工智能预测订单交付时间,利用人工智能提供准确的交付估算,
利用人工智能提升销售,识别能够促进销售的人工智能工具,利用人工智能增强销售策略,整合人工智能以理解客
理解数据
使用人工智能进行营销分析,解读基于人工智能的营销分析报告,利用人工智能检测营销数据中的模式,使用人工
使用人工智能进行情感分析,利用人工智能工具分析客户反馈,使用人工智能软件评估产品评论,从社交媒体帖子
在提案中使用人工智能,整合人工智能工具于销售提案中,利用人工智能驱动的数据分析进行提案,运用人工智能
发现和理解数据分析与大数据,识别关键数据分析方法,有效解读大数据洞察,利用数据分析进行决策,探索数据
使用人工智能进行一般研究,利用人工智能获取公司研究洞察,使用人工智能工具查找信息,借助人工智能解决方
使用人工智能进行数据分析,实施人工智能以增强数据洞察,将人工智能集成到数据处理任务中,利用人工智能工
发现人工智能的应用案例,识别商业中潜在的人工智能应用,探索人工智能在工作场所改进中的可能性,分析人工
使用人工智能进行决策支持,实施人工智能工具以进行决策,利用人工智能评估决策数据,将人工智能洞察整合到
使用人工智能进行路线优化,利用人工智能确定最佳配送路线,将人工智能系统整合到物流规划中,基于人工智能
理解人工智能的伦理影响,导航人工智能开发中的伦理考虑,评估人工智能对数据隐私的影响,预见人工智能算法
使用人工智能进行销售预测,利用人工智能预测销售趋势,使用人工智能工具提高预测准确性,在销售预测中实施
使用人工智能进行客户反馈分析,利用人工智能工具分析客户反馈,通过人工智能分析改善反馈处理,识别反馈中
使用人工智能进行市场分析,实施人工智能工具进行市场趋势分析,利用人工智能驱动的洞察评估市场变化,利用
使用人工智能结合公司知识,将人工智能与内部数据源整合,为特定公司需求定制人工智能工具,使用专有公司信
做出数据驱动决策
分析性思维