跳过导航
What ChatGPT Reveals About the Urgent Need for Responsible AI
Article

What ChatGPT Reveals About the Urgent Need for Responsible AI

As Generative AI democratizes adoption, new challenges loom for organizations.



Editorial Rating

9

getAbstract Rating

  • Innovative
  • Applicable
  • Visionary

Recommendation

Don’t let fear of the unknown keep you from implementing generative AI for your company’s deliverables, but do implement AI responsibly, and aim to do so early: The Boston Consulting Group has found that the average RAI (responsible artificial intelligence) program takes three years to mature. In this special report, the Boston Consulting Group’s Henderson Institute lays out actionable steps – including implementing insurance policies and red-teaming processes – for adopting AI responsibly.

Summary

Concerns about power, governance, unintended impacts on customers, capability overhang and ill-defined copyright issues plague generative AI.

First there was a mad scramble to incorporate AI into the processes and operations of organizations; now, organizations are recognizing the problems that can emerge with the use of AI, particularly generative AI. Consider ChatGPT: The program can generate credible-looking, but often incorrect, scientific texts, it can parrot hate speech, and can proliferate biases in avatars and images. But these aren’t the only issues. The data sets used by generative AI contain a wide variety of materials, laying the foundation for copyright claims. Though smaller organizations can use AI, only very large corporations with access to resources like large data sets, computing and engineering power can build generative AI. This means the power of generative AI is centralized among large, powerful organizations, leaving marginalized...

About the Authors

François Candelon is the global director at the BCG Henderson Institute. Abhishek Gupta is a fellow for Boston Consulting Group’s Augmented Collective Intelligence program, Steven D. Mills is the chief AI ethics officer at the BCG, and Leonid Zhukov is a partner and the associate director of data science at the BCG.


Comment on this summary

More on this topic

Related Skills

人工智能转型,实施基于人工智能的流程优化,跨部门整合人工智能解决方案,评估企业采用人工智能的准备情况
企业财务
推动人工智能转型,在各部门实施人工智能转型,协调与利益相关者的人工智能倡议,监督人工智能技术的整合,
利用人工智能进行金融,整合人工智能工具于财务分析中,增强财务运营与人工智能应用,利用先进的人工智能技
利用人工智能进行管理,将人工智能工具整合到管理流程中,使用人工智能分析管理数据,利用人工智能增强团队
在日常任务中利用人工智能,将人工智能工具整合到工作流程中,使用人工智能自动化重复性任务,利用人工智能
管理
理解人工智能,向同事解释基本的人工智能概念,区分人工智能与传统软件解决方案,总结人工智能在现代工作场
职场技能
建立人工智能治理,定义人工智能治理政策,实施人工智能伦理指南,评估人工智能风险管理流程,设计人工智能
使用人工智能进行风险建模,应用人工智能算法进行风险建模,将人工智能整合到风险评估流程中,利用人工智能
安全使用人工智能,确保人工智能安全合规,保护敏感数据,安全管理人工智能访问,降低人工智能安全风险,确
使用人工智能进行风险评估,通过人工智能分析识别风险,利用人工智能工具增强风险管理,利用人工智能预测潜
了解人工智能风险,识别商业中的人工智能风险因素,评估人工智能故障的影响,评估人工智能系统中的潜在偏见
了解生成性人工智能,识别生成性人工智能机会,探索生成性人工智能的应用,生成性人工智能在商业中的案例研