Summary of Predictive Analytics

The Power to Predict Who Will Click, Buy, Lie, or Die

Wiley, more...

Buy the book

Predictive Analytics book summary
Credit scores were just the start. Big business and big government soon will anticipate your every move.


8 Overall

8 Importance

7 Innovation

8 Style


Predictive analytics (PA) is a concept that’s both undeniably powerful and potentially creepy. This branch of computer science combines big data with statistics to foretell what you might buy, how you might vote or when you might die. Author and predictive analytics guru Eric Siegel is an unabashed cheerleader for his discipline, and he mostly brushes off the privacy concerns it raises. But that’s not to dismiss his study, which is engagingly written and elegantly translates dense materials and abstract concepts into easy-to-read prose. Siegel draws on a number of real-world examples from well-known companies, including Target, Hewlett-Packard and Chase Bank, and he describes his own experience as an expert consultant on predictive analytics. The result is an enlightening, plainly written guide. getAbstract recommends his PA overview to managers and investors seeking insight into a fast-growing corner of the tech economy.

In this summary, you will learn

  • How the popularity of predictive analytics exploded,
  • How organizations use predictions and
  • How decision trees work.


Big Data and Predictions

Imagine it’s 2022. Predictive analytics (PA) plays a crucial role in your life, starting with your commute to work. When you get in your car, a predictive model will use biometrics to verify your identity. Spotify will pick music based on its forecast of your musical tastes.

Get the key points from this book in less than 10 minutes. Learn more about our products or log in

About the Author

Former Columbia University professor Eric Siegel is the founder of Predictive Analytics World and executive editor of The Predictive Analytics Times.

Comment on this summary

  • Avatar
  • Avatar
    Martin De Urgoiti 1 month ago
    Good introduction. It didn't answer the question posted at beginning on how to *handle* privacy concerns.
  • Avatar
    TimADMIN Aulph 2 months ago
    This summary was a great read! Although I am not heavily involved with Analytics in my current position, analyzing data has always intrigued me. After reading this summary, I realize why - the predictive analytics side of it! I especially like the part about Decision Trees: 'Decision trees are “simple, elegant and precise” and “practically mathless.”' Math was one of my favorite subjects growing up; however, if I can do something more simply and get good results out of it, I will go with that option over using complex data with statistical formulas when and where I can! :)

More on this topic

Customers who read this summary also read

More by category